ASX ANNOUNCEMENT

28 February 2024

New high grade Lode system discovered at Sand King

Highlights

- High grade stacked lode system discovered in northern Sand King area with the first exploration hole intercepting:
 - o 16.0m @ 5.6 g/t 090° vein (including 14.0m @ 6.2 g/t and 3.8m @ 11.1g/t)
 - o 3.0m @ 14.4 g/t 090° vein (including 2.5m @ 17.0 g/t)
 - o 1.4m @ 10.2 g/t 090° vein
- This hole (SKDD23047) was testing potential for high grade tension vein (090°) structures in the northern Sand King area along strike of the main Sand King lode (060°) and under a shallow dipping ultramafic unit in a previously unexplored area
- These intercepts extend mineralisation a further 100m north and open up a significant exploration window, both further north and at depth as the ultramafic unit dips away to the south-east (see Figure 3 & 4)
- Additional assays from Phase 1 drilling have continued to support widths and grades conducive to underground mining including: (see Figures 2, 3 and 4)
 - o 7.1m @ 3.5 g/t 060° Lode
 - o 3.3m @ 5.8 g/t 060° Lode
- The central Sand King area is presenting as a large mineralised system with the main 060° structure continuing for over 500m of strike and has widths from 4m to more than 8m wide with grades ranging from 2g/t to over 10g/t. This 060° lode system demonstrates excellent potential for bulk tonnes at moderate grade from underground mining
- This newly discovered high grade lode system in the north combines well with the
 previously discovered discrete high grade lodes in the south of Sand King, which
 potentially will compliment the bulk mining opportunity in the central 060° lode system
- Phase 2 drilling continues (9 of original 16 holes complete) with additional holes now being planned to follow up this initial northern discovery

Ora Banda Mining Limited (ASX: OBM) ("Ora Banda", "Company") is pleased to announce additional outstanding intercepts from the current drill program at its Sand King Underground prospect located on the Siberia trend; approximately 800 metres north of the Missouri Open Pit. These results build on Sand King drill results previously announced (refer to ASX announcement "Sand King Exploration Update" dated 6 February 2024), which include:

•	2.4m @ 35.8 g/t	Sand King 060° Lode (including 1.5m @ 58.8 g/t)
•	11.5m @ 6.1 g/t	Sand King 060° Lode
•	4.3m @ 11.8 g/t	Sand King 060° Lode (including 3.9m @ 12.9 g/t)
•	8.0m @ 6.6 g/t	Sand King 060° Lode (including 7.0m @ 7.4 g/t)
•	9.0m @ 3.1 g/t	Sand King 060° Lode (including 6.3m @ 4.1 g/t)
•	3.5m @ 7.6 g/t	Sand King 010° Shear
•	6.1m @ 4.3 g/t	Sand King 060° Lode

Ora Banda Mining Limited's Managing Director, Luke Creagh, said:

"Discovering this high-grade lode system under the ultramafic unit is game changing for the prospects of a potential underground mine at Sand King. Our confidence is growing daily, and it is becoming more apparent that we are only scratching the surface of the Siberia Gold Complex.

"The Sand King Underground drill out is tracking well and we are excited by the potential to deliver a second underground mine to support our Riverina Underground operations. If achieved, the business will be in a step change position whereby the 1.2mtpa Davyhurst process plant will be full of high-grade ore and our production rate will increase substantially."

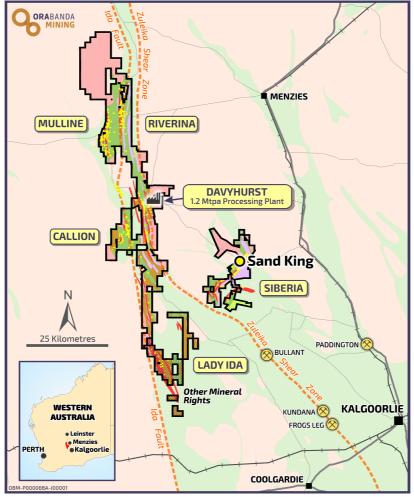


Figure 1 Location Plan

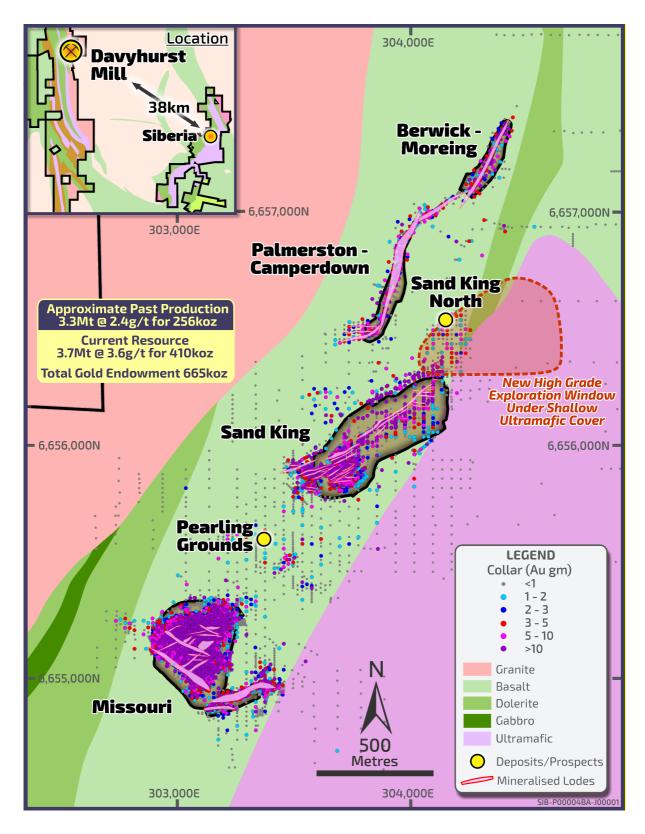


Figure 22 Plan view of Davyhurst project showing location of Sand King on the Siberia Trend

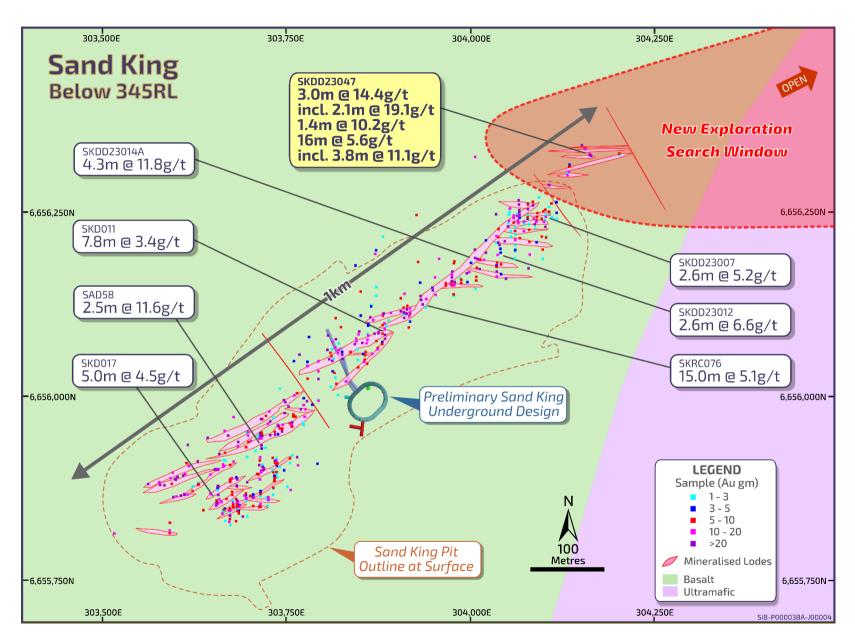


Figure 3 - Sand King Plan view at the 345mRL (160m below surface)

Refer ASX announcements dated 13822 Sept 2016, 25 Oct 2016, 2815823 Nov 2016, 15 Dec 2016, 27 Apr 2020, 2 Nov 2023, 6 Feb 2024 and the Company's website https://orabandamining.com.au/technical-data/ for further information on historical significant intercepts.

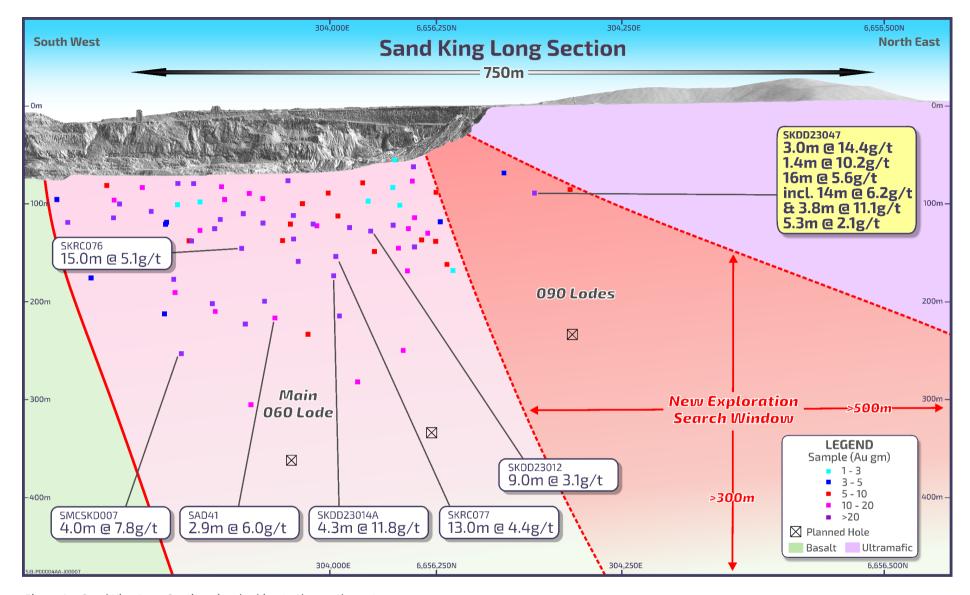


Figure 4 – Sand King Long Section view looking to the north west

Refer ASX announcements dated 13822 Sept 2016, 25 Oct 2016, 2815823 Nov 2016, 15 Dec 2016, 27 Apr 2020, 2 Nov 2023, 6 Feb 2024 and the Company's website https://orabandamining.com.au/technical-data/ for further information on historical significant intercepts.

Siberia Project Overview

The Siberia project comprises the Missouri, Sand King, Palmerston, Bewick Moering, Theil Well and Black Rabbit deposits with a gold endowment of 750koz¹, made up of published mineral resources of 4,149,000 tonnes @ 3.4g/t for 458,000 ounces² and historical production of 293,000 ounces at a grade of 2.5g/t¹, predominantly from open pit sources. Siberia is located 37km southeast of the Davyhurst processing plant and approximately 80km northwest of Kalgoorlie within the Eastern Goldfields of Western Australia.

Siberia has been the focus for the Company's most recent open pit mining endeavours having produced 118,000 ounces¹ since mining recommenced in 2021. The Company is now turning its attention to the underground potential of the Siberia Complex noting that 95% of the 12,700 holes drilled to date are less than 100 metres in depth, meaning the underground exploration search windows are largely unexplored.

Sand King Overview

Sand King was previously mined by Western Mining Corporation (WMC) from the late 1980's to 1991 by open pit methods, producing approximately 50,000 ounces at 4.8g/t. Under OBM a small cutback to the south commenced in August 2023 and was completed in early January 2024, mining 11,400 ounces at 1.7g/t. The Sand King mineralised system is over 1km of strike length, with mineralisation tested to over 300 metres at depth and remains open both along strike and at depth.

Geology and Structural Synthesis

Early Shears

There are early shears in two distinct orientations at Sand King. One shear system strikes towards 010° and the other strikes towards 330°. Both dip to the north-east, forming a conjugate pair. Several definable shear structures have been either mapped in the pit and/ or logged in the diamond core. The shears are ductile, having formed in a deep tectonic environment. The shears vary from a few cm to +/-1 metre wide and were poorly mineralised or unmineralised at formation.

Mineralised vein system

Tension veins consisting of quartz, potassic alteration with sulphides and gold were later emplaced at Sand King. The tension veins formed from hydrostatic pressure at shallower depths and have either a 060° or 090° strike orientation. The 060° orientation is dominant with strike lengths of up to several hundred metres while the 090° veins are less strike extensive and frequently terminate on the 060° veins.

The interaction of late veins with early shears

The behaviour of the tension veins when they intersect the early shears depends on the shear and vein orientations. Observed interactions include:

- 090° veins frequently terminate on 060° veins
- 060° and 090° veins terminate and at times migrate along 330° shears
- Tension veins frequently pass through 010° shears

¹ Historical production figures sourced from internal Company Records (updated from Monarch Gold 2008)

² For further details see ASX Announcement dated 26 October 2023

The 330° shears are strongly foliated and frequently quartz filled which becomes a host for the gold introduced by the later tension veins. When the tension veins intersect the 330° shears the ore bearing fluids migrate up and down the shear, causing grade and volume "blowouts". The 010° shears exhibit a weak planar foliation, without quartz and are generally a poorer gold host.

Mineral stretching lineations in the 330° shears imply a steep northerly plunge to the gold mineralisation. Boudinaged quartz in shears are infrequently observed but boudin necks plunge steeply north confirming the overall mineralisation plunge. Furthermore, the intersection of the steep north dipping tension veins with the moderate north dipping 330° and 010° shears give a steep north plunge to the high-grade blow-outs.

Implications for mining

There are four gold bearing structural orientations at Sand King, 090°, 060°,010° and 330°. The 090° and 060° tension veins are well mineralised with good mining potential. The 330° and 010° shears are well mineralised where intersected by the 090° and 060° tension veins. Where several spaced tension veins intersect the shears, they are well mineralised over a reasonable strike length, again with good mining potential.

This announcement was authorised for release to the ASX by Luke Creagh, Managing Director.

For further information about Ora Banda Mining Ltd and its projects please visit the Company's website at www.orabandamining.com.au.

Investor & Media Queries: Luke Creagh Managing Director +61 8 6365 4548 admin@orabandamining.com.au

Competent Persons Statement

The information in this announcement that relates to exploration results is based on, and fairly represents, information and supporting documentation prepared by Mr Andrew Czerw, an employee of Ora Banda Mining Limited, who is a Member of the Australian Institute of Mining and Metallurgy. Mr Czerw has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Czerw consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in this announcement that relates to prior exploration results was reported in the ASX announcements dated 13 & 22 September 2016, 25 October 2016, 2, 15 & 23 November 2016, 15 December 2016, 27 April 2020, 2 November 2023 and 6 February 2024. The Company is not aware of any new information or data that materially affects the information included in the relevant announcements.

The information in this announcement that relates to mineral resources for Siberia was reported in the Company's ASX announcement, Mineral Resource and Ore Reserve Statement, dated 26 October 2023. The Company confirms that it is not aware of any new information or data that materially affects the information included in that announcement and that all material assumptions and technical parameters underpinning the estimates in that announcement continue to apply and have not materially changed.

Forward-looking Statements

This announcement contains forward-looking statements which may be identified by words such as "believes", "estimates", "expects', "intends", "may", "will", "would", "could", or "should" and other similar words that involve risks and uncertainties. These statements are based on an assessment of present economic and operating conditions, and on a number of assumptions regarding future events and actions that, as at the date of this announcement, are expected to take place.

Such forward-looking statements are not guarantees of future performance and involve known and unknown risks, uncertainties, assumptions and other important factors, many of which are beyond the control of the Company, the Directors and management of the Company. These and other factors could cause actual results to differ materially from those expressed in any forward-looking statements.

The Company has no intention to update or revise forward-looking statements, or to publish prospective financial information in the future, regardless of whether new information, future events or any other factors affect the information contained in this announcement, except where required by law.

The Company cannot and does not give assurances that the results, performance or achievements expressed or implied in the forward-looking statements contained in this announcement will actually occur and investors are cautioned not to place undue reliance on these forward-looking statements.

Appendix 1

Significant Intersections Table – OBM Drill holes

1g/t Cut-off, 0.2m minimum width, maximum 2m internal dilution

Project	Hole ID	MGA North	MGA East	RL	Azi	Dip	End Depth	Hole Type	Depth From	Depth To	Interval	Gram Metres	Au g/t interval	Cutoff
SIBERIA NORTH	SKDD23016	6656282		421	180	-63	282	DDH	225.60	235.73	10.13	20.7	10.1m @ 2.0 g/t	1
	SKDD23016								Incl 227.40	229.00	1.60	10.4	1.6m @ 6.5 g/t	2
	SKDD23016								Incl 234.20	235.28	1.08	2.5	1.1m @ 2.3 g/t	2
	SKDD23016								241.15	241.56	0.41	0.4	0.4m @ 1.1 g/t	1
	SKDD23016								241.97	242.60	0.63	0.9	0.6m @ 1.4 g/t	1
	SKDD23016								249.20	250.00	0.80	1.4	0.8m @ 1.8 g/t	1
SIBERIA NORTH	SKDD23024B	6656201	303855	419	179	-53	207	DDH	176.80	180.13	3.33	19.4	3.3m @ 5.8 g/t	1
SIBERIA NORTH	SKDD23025	6656190	303837	419	184	-49	298	DDH	154.27	157.00	2.73	14.5	2.7m @ 5.3 g/t	1
	SKDD23025								Incl 154.27	155.76	1.49	13.2	1.5m @ 8.9 g/t	2
	SKDD23025								178.00	178.89	0.89	4.8	0.9m @ 5.4 g/t	1
	SKDD23025								182.64	183.42	0.78	5.5	0.8m @ 7.0 g/t	1
	SKDD23025								188.08	191.13	3.05	17.3	3.1m @ 5.7 g/t	1
	SKDD23025								205.30	208.50	3.20	9.0	3.2m @ 2.8 g/t	1
	SKDD23025								253.59	264.29	10.70	19.1	10.7m @ 1.8 g/t	1
	SKDD23025								Incl 253.59	260.81	7.22	16.7	7.2m @ 2.3 g/t	2
	SKDD23025								Incl 264.00	264.29	0.29	1.2	0.3m @ 4.3 g/t	2
	SKDD23025								269.00	272.96	3.96	6.2	4.0m @ 1.6 g/t	1
	SKDD23025								Incl 269.00	269.95	0.95	3.9	1.0m @ 4.1 g/t	2
SIBERIA NORTH	SKDD23042A	6656129	303703	416	155	-41	312	DDH	137.43	138.00	0.57	2.1	0.6m @ 3.7 g/t	1
	SKDD23042A								163.20	163.83	0.63	8.1	0.6m @ 12.9 g/t	1
	SKDD23042A								190.22	190.77	0.55	5.2	0.6m @ 9.4 g/t	1
	SKDD23042A								194.76	195.69	0.93	6.4	0.9m @ 6.9 g/t	1
	SKDD23042A								226.64	227.69	1.05	4.4	1.1m @ 4.2 g/t	1
	SKDD23042A								233.02	235.35	2.33	10.4	2.3m @ 4.4 g/t	1
	SKDD23042A								240.28	244.00	3.72	4.9	3.7m @ 1.3 g/t	1
	SKDD23042A								Incl 240.28	241.15	0.87	2.2	0.9m @ 2.6 g/t	2
SIBERIA NORTH	SKDD23045	6656361	304134	426	160	-60	282	DDH	89.00	91.32	2.32	3.4	2.3m @ 1.5 g/t	1
	SKDD23045								Incl 89.00	90.00	1.00	2.7	1.0m @ 2.7 g/t	2
	SKDD23045								Incl 91.00	91.32	0.32	0.7	0.3m @ 2.3 g/t	2
	SKDD23045								94.50	94.77	0.27	0.6	0.3m @ 2.2 g/t	1
	SKDD23045								127.00	127.75	0.75	4.5	0.8m @ 6.0 g/t	1
	SKDD23045								Incl 127.00	127.45	0.45	4.1	0.5m @ 9.1 g/t	2
SIBERIA NORTH	SKDD23047	6656363	304132	426	138	-71	204	DDH	92.00	93.00	1.00	2.8	1.0m @ 2.8 g/t	1
	SKDD23047								96.00	99.00	3.00	43.2	3.0m @ 14.4 g/t	1
	SKDD23047								Incl 96.00	98.50	2.50	42.5	2.5m @ 17.0 g/t	2
	SKDD23047								Incl 96.36	98.50	2.14	41.0	2.1m @ 19.1 g/t	10
	SKDD23047								114.00	117.00	3.00	7.8	3.0m @ 2.6 g/t	1
	SKDD23047								Incl 114.48	117.00	2.52	7.1	2.5m @ 2.8 g/t	2
	SKDD23047								120.00	121.40	1.40	14.2	1.4m @ 10.2 g/t	1
	SKDD23047								145.00	161.00	16.00	89.0	16.0m @ 5.6 g/t	1
	SKDD23047								Incl 147.00	161.00	14.00	87.2	14.0m @ 6.2 g/t	2
	SKDD23047									159.60	3.80	42.1	3.8m @ 11.1 g/t	10
	SKDD23047								168.16	168.61	0.45	3.7	0.5m @ 8.2 g/t	1
	SKDD23047								171.40	173.17	1.77	9.2	1.8m @ 5.2 g/t	1
	SKDD23047								179.00	184.34	5.34	11.0	5.3m @ 2.1 g/t	1
	SKDD23047								Incl 181.29	184.34	3.05	9.9	3.1m @ 3.2 g/t	2
	SKDD23047								197.00	197.44	0.44	4.3	0.4m @ 9.8 g/t	1
	525047	<u> </u>							_37.30		31.14		5 6. 5.0 8/ 0	_

Project	Hole ID	MGA	MGA	RL	Azi	Dip	End	Hole	Depth	Depth	Interval	Gram	Au g/t interval	Cutoff
•		North	East				Depth	Туре	From	То		Metres		
SIBERIA NORTH	SKDD23048	6656360	304200	426	174	-70	160	DDH	88.23	88.60	0.37	1.4	0.4m @ 3.8 g/t	1
	SKDD23048								92.45	95.50	3.05	8.0	3.1m @ 2.6 g/t	1
	SKDD23048								Incl 92.45	95.00	2.55	7.1	2.6m @ 2.8 g/t	2
	SKDD23048								99.13	99.58	0.45	0.6	0.5m @ 1.3 g/t	1
	SKDD23048								101.35	102.35	1.00	1.6	1.0m @ 1.6 g/t	1
	SKDD23048								Incl 101.35	101.80	0.45	1.1	0.5m @ 2.4 g/t	2
	SKDD23048								117.57	119.60	2.03	3.5	2.0m @ 1.7 g/t	1
	SKDD23048								Incl 117.57	118.00	0.43	1.0	0.4m @ 2.3 g/t	2
SIBERIA NORTH	SKGT23002	6655894	303878	417	337	-58	414	DDH	132.31	132.81	0.50	0.8	0.5m @ 1.5 g/t	1
	SKGT23002								189.17	189.65	0.48	0.5	0.5m @ 1.1 g/t	1
	SKGT23002								247.05	254.17	7.12	24.7	7.1m @ 3.5 g/t	1
	SKGT23002								266.61	267.90	1.29	8.0	1.3m @ 6.2 g/t	1
	SKGT23002								285.85	286.45	0.60	1.3	0.6m @ 2.2 g/t	1
	SKGT23002								318.36	318.90	0.54	0.6	0.5m @ 1.1 g/t	1
	SKGT23002								325.45	325.81	0.36	1.3	0.4m @ 3.7 g/t	1
	SKGT23002								344.01	344.30	0.29	0.9	0.3m @ 3.0 g/t	1
SIBERIA NORTH	SKGT23003	6655823	303865	417	336	-61	433	DDH	95.70	96.00	0.30	3.5	0.3m @ 11.6 g/t	1
	SKGT23003								370.40	380.54	10.14	16.3	10.1m @ 1.6 g/t	1
	SKGT23003								Incl 370.40	372.00	1.60	6.8	1.6m @ 4.2 g/t	2
	SKGT23003								Incl 379.00	380.00	1.00	3.0	1.0m @ 3.0 g/t	2
	SKGT23003								386.21	389.00	2.79	3.8	2.8m @ 1.4 g/t	1
	SKGT23003								Incl 388.09	388.61	0.52	1.5	0.5m @ 2.8 g/t	2
	SKGT23003								392.00	393.00	1.00	3.0	1.0m @ 3.0 g/t	1
	SKGT23003								408.74	409.43	0.69	1.4	0.7m @ 2.0 g/t	1
	SKGT23003								427.44	427.86	0.42	0.5	0.4m @ 1.1 g/t	1
SIBERIA NORTH	SKRC23001	6655954	303763	350	154	-55	102	RC	27.00	28.00	1.00	1.8	1.0m @ 1.8 g/t	1
SIBERIA NORTH	SKRC23004	6655944	303748	350	156	-49	90	RC	35.00	37.00	2.00	4.6	2.0m @ 2.3 g/t	1
	SKRC23004								Incl 36.00	37.00	1.00	2.8	1.0m @ 2.8 g/t	2

Appendix 2 - JORC CODE, 2012 EDITION - TABLE 1 REPORT TEMPLATE

Section 1 Sampling Techniques and Data – Missouri & Sand King

Information for historical (Pre Ora Banda Mining Limited from 1980's to 2010) drilling and sampling has been extensively viewed and validated where possible. Information pertaining to historical QAQC procedures and data is incomplete but of a sufficient quality and detail to allow drilling and assay data to be used for resource estimations. Further Ora Banda Mining Limited has undertaken extensive infill and confirmation drilling which confirm historical drill results. Sections 1 and 2 describe the work undertaken by Ora Banda Mining Limited and only refer to historical information where appropriate and/or available.

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Goldfields Group; Auger holes were drilled to a maximum depth of 1.5m. RC samples were routinely collected at 1m intervals. Diamond drill core samples were taken at geological boundaries and sawn in half. Samples pulverised at laboratory. Monarch Gold Mining Company Ltd; RAB samples were collected at 2m and 4m composites via a scoop method at 1m intervals. RC samples were collected at 1m, 2m to 5m intervals. 1m samples were riffle split. WMC; In early drilling by WMC, samples were "panned" for visible gold. Percussion samples were collected at 1m intervals, split in the field. Diamond core samples were cut in half or quartered. Gilt Edged Mining NI; All RAB and RC holes were collected through a cyclone and sampled at 1m intervals, pipe or spear sampled, composited over 5m intervals. The composite samples weighing about 3kg were despatched for analysis. 5m composites with assays greater than 0.2 g/t Au were resampled by riffle-splitting the whole of each 1m sample down to about 3kg prior to being despatched for analysis. Siberia Mining Corporation Ltd; RAB samples were collected at 1m intervals from the drill hole collar using a plastic bucket and laid on the ground. A scoop sample was taken from each sample to form a 5m composite. RC samples were collected at 1m intervals and passed through a cyclone and split using a two tiered, 75:25 riffle splitter. The split sample (approximately 2-3kg) was stored in a drawn calico bag, which was then placed next to the split sample reject (approximately 10-15kg), which was contained in UV resistant PVC bags. A representative scoop sample was then taken from each split sample reject bags to form a 4m composite sample. Diamond half core sampled at 1m intervals. Ora Banda Mining; RC samples were routinely collected at 1m intervals and cone split. Half sawn core samples crushed, pulverised and 40g or 50g sample taken for fire assay at intertek. RC grade control samples are collected at 1m intervals i
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Goldfields Group; Auger holes were using an auger rig on the back of a Toyota Landcruiser from Snap Drilling. RC holes were drilled by Western Diamond Drillers using a Schramm Rig. Diamond holes were drilled by Mundy Drilling services using a KL1200 rig. Diamond holes were oriented. Monarch Gold Mining Company Ltd; RC holes were drilled by Kennedy Drilling using a 4 inch blade. WMC; RC percussion holes were drilled using a Schram Rig. RC holes were drilled using blades and hammer. The RC drilling diameter is unknown. Diamond drill holes for NQ core were drilled and reduced to BQ core at depth if necessary. Some diamond holes commenced with a percussion pre-collar. Diamond core generally not oriented. Gilt Edged Mining NL; RC holes were drilled by either Sing Drilling or McKay Drilling. Both Kalgoorlie companies used a booster and auxiliary compressor. The RC drilling diameter is unknown. Siberia Mining Corporation Ltd; RAB holes were drilled by ProDrill Pty Ltd of Kalgoorlie using an open hole RAB drill rig. All holes were

Criteria	JORC Code explanation	Commentary
Drill sample recovery Logging	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	drilled dry. RC holes were drilled by Premium Drilling Pty Ltd of Kalgoorlie using a 350/750 Schram RC drill rig and a 5.25" face sampling hammer. An auxiliary booster was used on holes deeper than 75m. EGL; RC drilling using 5.25 inch face sampling hammer. PQ, HQ and NQ diamond core. PQ drilled from surface to fresh rock, then changed to NQ. Ora Banda Mining Limited – 5.5 – 5.625 inch diameter RC holes using face sampling hammer with samples collected under cone splitter. Core holes have RC pre-collars up to 150m depth, then NQ2 coring to BOH. All core oriented by reflex instrument. RC grade control rig is 5.5 inch diameter hammer with samples collected from a rig mounted cone splitter into calico bags which are submitted for assay. GC Drilling was carried out by Australian Surface Drill Contractors, Rock on Ground and Orlando Drilling. Quantitative auger, RAB and RC drill recoveries were not recoded by Goldfields Group, Monarch Gold Mining Company Ltd, WMC, Gilt Edged Mining NL, Siberia Mining Corporation, Maitland Mining NL, Newcrest Mining Ltd, Julia Mines NL, Placer Dome Asia Pacific Ltd, Goongarrie Gold Py Ltd, Australian Consolidated Equities Ltd, Centaur Mining and Exploration Ltd, EGL, Britannia Gold NL, Glengarry Resources NL, Sundowner Minerals NL and Gutnick Resources NL EGL - Diamond drill recoveries are recorded as a percentage calculated from measured core against downhole drilled intervals (core blocks). RC sample recoveries not recorded. Ora Banda Mining Limited – RC drilling recoveries, including Grade control RC were recorded on a pre metre basis based on sample size. Diamond Core recoveries are very high due to the competent ground. Any core recovery issues are noted on core blocks and logged. There is no known relationship between sample recovery and grade. Goldfields Group; Qualitative: colour, oxidation, hardness, shearing, texture, grain size, rock, alteration, minerals and Quantitative: alteration intensity, mineralisation intensity, structure intensity, vein percent. WMC; RC and
		 Ora Banda Mining Limited - Qualitative: Lithology, colour, oxidation, grainsize, texture, structure, hardness, regolith. Quantitative: estimates are made of quartz veining, sulphide and alteration percentages. Magnetic susceptibility recorded on a per metre basis in core holes. Core hole RQD logged. Core photographed wet and dry. Bulk density determination using Archimede's Principle is routinely undertaken using whole core segments. Grade control holes are logged with an abbreviated mine sequence logging system. Entire holes are logged in detail.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub- 	 Goldfields Group; RC samples were routinely collected at 1m intervals and riffle split. Diamond drill core samples were taken at geological boundaries and sawn in half. RC and diamond samples were dried, crushed, split, pulverised and a 50 gm charge taken. All sampling of resource drilling incorporated a system of standards and blanks to keep strict control on assay reliability. Monarch Gold Mining Company Ltd; RAB samples were collected at 1m intervals and 2m and 4m composites taken via a scoop method. RC samples were collected at 1m, 2m and 5m intervals. 1m samples were riffle split. Samples were prepared with a single stage mix and grind from which an assay charge was taken Composite samples with assays greater than 0.2 g/t Au were split at 1m intervals and re-analysed. Field duplicate samples were taken and analysed every 20 samples. Blanks and standards were routinely submitted with assay batches to evaluate sample preparation and assay accuracy.
	sampling stages to maximise representivity of samples. • Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. • Whether sample sizes are appropriate to the grain	 WMC; In early drilling by WMC, samples were "panned" for visible gold. Percussion samples were collected at 1m intervals, split in the field. Diamond core samples were cut in half or quartered. Samples were dried in fan forced ovens at 80°C for paper packets and 140°C for samples in calico bags, sieved using a nylon mesh. Oversize samples crushed in Jacques jaw crusher to produce -6mm sample, split employing either a rotary or riffle splitter and pulverised using Tema Swing mills prior to analysis, except for soil and stream sediment samples finer than 80 mesh. A 25grm charge was taken for assaying. Gilt Edged Mining NL; All RAB and RC holes were collected through a cyclone and sampled at 1m intervals, pipe or spear sampled, composited over 5m intervals. The composite samples weighing about 3kg were despatched for analysis. 5m composites with assays

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	greater than 0.2 g/t Au were resampled by riffle-splitting the whole of each 1m sample down to about 3kg prior to being despatched for analysis. Samples were despatched to Mintab in Kalgoorile where they were dried, pulverised to a nominal 90% minus 200 mesh (75 microns) and a 25 gm aliquot taken to be analysed for gold. Comprehensive QA/QC and check sampling reports were produced. Umpire assay checks were completed using a second laboratory (Genalysis). Siberia Mining Corporation Ltd; ARB samples were collected at 1m intervals from the drill hole using a plastic bucket and laid on the ground. A scoop sample was taken from each sample to form a 5m composite. RC samples were collected at 1m intervals and passed through a cyclone and split using a two teared, 75:25 friffs splitter. The split sample (approximately 2, 90 was stored in a drawn calico bag, which was then placed next to the split sample reject (approximately 10-15kg), which was contained in Uresistant PVC bags. A representative scoops ample was then taken from each split sample reject (approximately 10-15kg), which was contained in Uresistant PVC bags. A representative scoops ample was then taken from each split sample reject (approximately 10-15kg), which was contained in Uresistant PVC bags. A representative scoops ample was the taken free field duplicates were submitted and the sample severe collected at 1m intervals from 4m composite sample. Diamond half core was sampled at 1m intervals. Composites with assays greater than 0.2 g/t Au were re-assaying individual 1m re-split samples. EGL 8. Swan Gold; RC samples were routinely collected at 1m intervals from a cone splitter and submitted for analysis. Samples were crushed, pulverised and a 50gm charge taken, filed duplicates, blanks and standards were submitted for GAQC analysis. Diamond core in sampled at 1m intervals or to zones of geological intervals. Selected by geological and senior or composite of the split of the

Criteria	JORC Code explanation	Commentary
		pulverised sample passing a 75µm mesh) are undertaken on approximately 1 in 40 samples. Duplicate samples are taken in RC drillholes at a rate of approximately 1:30. The accuracy (standards) and precision (repeats) of assaying are acceptable. Grade control samples are analysed at SGS, Kalgoorlie using 50g fire assay (FA_MPAES). Blanks and standards are submitted every 10 to 15 samples with Grade Control samples.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Selected drill intersections from WMC, Goldfields and Siberia Mining Corporation diamond core have been inspected by EGL/OBM geologists. Some WMC holes have been re-logged by EGL geologists and mineralisation identified at the reported intervals. Drill intersections from WMC and Goldfields diamond core were inspected by Siberia Mining Corporation geologists in 2005 and mineralization was visible in core at the expected intervals. Mineralisation widths and styles are very comparable with NQ2 drilling by SMC in 2004. Holes are not deliberately twinned. WMC; Hand written geology logs and assays were digitally captured. EGL; Data has been verified by reviewing original drill and assay logs. Print outs of computerized sample intervals and assays generated by WMC were used to verify the intercepts reported. Geological and sample data logged directly into field computer at the core yard. Data is transferred to Perth via email and imported into GBIS SQL database by the database administrator (DBA). Assay files are received in .csv format and loaded directly into the database by the DBA. Hardcopy and/or digital copies of data are kept for reference if necessary. Monarch Gold Mining Company Ltd; Geological and sample data was logged digitally and .csv or .xls files imported into Datashed SQL database with in-built validation. Ora Banda Mining Limited - Geological and sample data logged directly into field computer (Panasonic Toughbook CF-31) at the core yard or at the drill rig using Geobank Mobile. Data is exported from the logging computer, copied onto the company servers and imported into Geobank SQL database by the database administrator (DBA). Assay files are received in .csv format and loaded directly into the database by the DBA. Hardcopy and/or digital copies of data are kept for reference if necessary. Data entry, verification and storage protocols for remaining operators is unknown.
		No adjustments have been made to assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Goldfields Group; Collar co-ordinates for RC and DD holes, including elevation were surveyed with DGPS. RAB holes were located with GPS. Downhole surveys were taken every 10m for RC and DD holes, method unknown. RAB holes not downhole surveyed. The gird system used is AGD 1984 AMG Zone 51. Monarch Gold Mining Company Ltd; Drill hole collars were surveyed by Spectrum Surveys of Kalgoorlie using RTK GPS. Downhole surveys were undertaken by electronic multiple shot (EMS) or Eastman single shot. The gird system used is GDA1994 MGA Zone 51. WMC; Drill hole collars were surveyed by Electronic Distance Meter (EDM) theodolite by the Kalgoorlie Gold Operations' mine surveyor. Holes also surveyed using theodolite by McGay Surveys as well as by WMC mine surveyors. WMC RC holes were generally not downhole surveyed. Diamond holes down hole surveyed by Eastman single shot camera or multishot approximately every 30m. The gird system used is AGD 1984 AMG Zone 51. Gilt Edged Mining NI; Contract surveyors were engaged for siting of drill holes prior to drilling, pick-up of accurate drill hole co-ordinates after drilling and down-hole plunge and azimuth readings. All holes drilled after 1998 were picked up by Fugro Survey Pty Ltd of Kalgoorlie using differential GPS. The gird system used is AGD 1984 AMG Zone 51. Siberia Mining Corporation Ltd; Collar co-ordinates for northings, eastings and elevation were recorded by Fugro Spatial Solutions Pty Ltd. The gird system used is AGD 1984 AMG Zone 51. Diamond holes were down hole surveyed by gyro. RC holes generally not downhole surveyed. If surveyed, then done by Digital electronic multishot (DEMS) EGL and Swan; Collar locations were surveyed by DGPS and downhole surveys were collected using electronic multishot by the drillers. Subsequent to drilling holes were open hole gyro surveyed by ABIMS where possible. The gird system used is GDA1994 MGA Zone 51. Ora Banda Mining Limited (RC, DD) MGA94, z

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drilling is predominantly on a 20mE X 20mN grid. Grade control drilling was carried out on a nominal 5m X 5m grid At Sand King the data spacing and distribution is sufficient to establish geological and grade continuity to support the definition of Mineral Resource and classifications as defined under the JORC 2012 code. Samples are not composited for reporting. Samples are composited for resource calculations.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 At Sand King drilling is predominantly inclined to the south, optimal for the predominantly ENE (0600) striking, north dipping mineralisation. It is not known whether there is any introduced sample bias due to drill orientation.
Sample security	The measures taken to ensure sample security.	 Unknown for earlier operators. EGL – Samples are bagged, tied and in a secure yard on site. Once submitted to the laboratories they are stored in cages within a secure fenced compound. Samples are tracked through the laboratory via their LIMS. Monarch - Pre-numbered sample bags were put into numbered plastic bags. These numbers were written on the submission forms which were checked by the geologist. Plastic bags were then securely cable tied and placed in a secure location. Samples were then picked up by the Lab in Kalgoorlie or deliver to Perth via courier. A work order conformation was emailed to Monarch personnel for each sample submission once samples were received by the Laboratory. Ora Banda Mining Limited - Samples were collected on the day of drilling and bagged into cable tied polyweave bags. Polyweave bags are stored into bulka bags on pallets in a secure yard on-site. Once submitted to the laboratories they are stored in cages within a secure fenced compound. Samples are tracked through the laboratory via their LIMS.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 Digital data from the SQL database has been reviewed by EGL and is consistent with hard copy and digital WAMEX data. Siberia Mining Corporation conducted a due diligence on the data and core in 2005 and were "comfortable with the quality and integrity of the data". Digital data has been reviewed and is consistent with hard copy data. Monarch Gold Mining Company Ltd; Monthly QAQC reports were produced to monitor accuracy and precision.

Section 2 Reporting of Exploration Results – Missouri & Sand King

(Criteria listed in the preceding Missouri & Sand King section also apply to this section.)

Criteria	JORC Code explanation	Cor	Commentary								
Mineral tenement and land tenure	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title		Sand King deposit is on Tenement M24/960 held by Siberia Mining Corporation Pty. Ltd., a wholly owned subsidiary of Ora Banda Mining. The tenement is in good standing.								
status	interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.		M24/0960	SIBERIA MINING CORPORATION PTY LTD	AGREEMENTS SIBERIA GRANTED GARDNER THE RIGHT TO EXPLORE FOR NICKEL MINERALS (portion of the tenement only) ROB MITCHELL AND HANK SHRERS (SURFACE ALLUVIAL RIGHTS TO 2M DEPTH) (portion of the tenement only)						
			There are no known heritage issues There are no known impediments to operating in the area.								
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	•	Drilling on the te	nements was compl	eted by numerous operators, but the majority of work was completed by WMC, Gilt Edged Mining, Gold and EGS/OBM. All work by these companies was to industry standards of the time.						
Geology	Deposit type, geological setting and style of mineralisation.	•	Gold mineralisat from sub 1m to ~ and normally ste	ion at Sand King take 6m true width. Occa eply dipping (~80 de	eposit hosted by mafic rocks, predominantly basalt. es the form of stacked quartz-biotite-feldspar-sulphide shear lodes within the basalt. Widths vary sionally blow outs occur with >6m true width. Mineralised structures are NE-SW striking in the sout grees) to the north-west while in the north-eastern end of the deposit most mineralisation is ply to the north (~80 degrees)						
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	:	The significant a lode position project area wi	with grades below th th significant gold in	ent des details of drill holes with intercepts of >= 1 gram metres, In cases where drilling has intercepte is value, NSI (no significant intercept) is listed. This provides context to the number of holes in the tercepts versus the number of holes with lesser or no significant intercepts. tercepts table are all down hole lengths.						
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be		Original assays a minimum width No metal equiva	of 0.2m.	Grades are not top cut. Lower cut off grade is nominally 1.0g/t. Maximum 2m internal dilution and						

Criteria	JORC Code explanation	Commentary
	stated. • Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. • The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg'down hole length, true width not known'). 	 Drilling is predominantly angled at -60° to the south, optimally intersecting the steep north dipping mineralisation. This drill orientation does not intersect all lodes at optimal angles and as such some drill intercepts are longer than true widths. All intercept widths reported are down hole lengths. The geometry of mineralisation is known for the Sand King deposit. However, no attempt has been made to report true widths. Some drill programs required shallow angle (-30°) diamond drilling to hit specific targets within the constraints of existing mining infrastructure (existing pit and dumps)
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	See plans and sections.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All drill intercepts from recent drilling are reported. Results reported include both low and high gram metre (g/t x down hole length) values.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Metallurgical and geotechnical work has been completed for Sand King deposit in the past. Additional metallurgical, geotechnical, environmental and engineering work has been or is in the process of being completed for Sand King deposit.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Statutory approvals for OP mining Sand King are in place. Additional drilling to grow the UG resource. UG mining studies. Statutory approvals for UG mining required.