13 February 2025

SUCCESSFUL EXPLORATION DRILLING AT RIVERINA PAVES THE WAY FOR MULTI-YEAR MINE LIFE EXTENSION

Highlights:

- Deep drilling at Riverina Underground confirms continuity of high-grade gold mineralisation over 300m below the current mine plan, with the drill campaign still progressing
- Extensional drilling from Riverina Underground extends mineralisation in central area resulting in immediate additions to mine plan
- Potential new greenfields discovery at Little Gem, located 2.5km south along strike of Riverina Underground with first drill hole intersecting 3 parallel lodes, at good grade and width
- Board has approved additional spend of \$16 million in Exploration & Resource Development and \$29 million in Capital to rapidly advance drilling and expand infrastructure

Ora Banda Mining Limited (ASX: OBM) ("Ora Banda", "Company") is pleased to provide an update on its continued exploration success at the high-grade Riverina Gold Camp.

Riverina Underground

Since October 2024, two surface diamond drill rigs have been drilling to test depth extents at the Riverina Underground as well as 2 underground drill rigs focussing on near mine extensions. These programs are approximately 50% complete, however have delivered significant results by extending known structure and mineralisation to over 1km deep, which is 800m below the current working level and 500m below current mine plan. In addition, the deep drilling has identified a high-grade shoot that is over 600m below current workings and 300m below current mine plan with intersections of 2.9m @ 36.0 g/t and 2.9m @ 18.9 g/t on the main lode and remains open at depth (see Figure 2).

Significantly, the latest drilling results demonstrate the continuity of the mineralised structures which remain open and display strong tenor and grade in the deepest holes. The main lode mineralised structure has been intersected in its anticipated position despite large step outs and drill hole depths in excess of 1km. The high-grade shoot style of the mineralisation is consistent with what is observed in the current underground workings.

Given the significantly under-drilled nature of the Riverina system, two underground diamond drill rigs have been focused on near mine extensions of the mineralised system that have minimal data. This drilling has been very successful with extension in the central "shark bite" adding two additional levels, with one of the best intersections returning 1.5m @ 62.3g/t (see Figure 5). Riverina Underground also continues to benefit from the multiple stacked lodes per level, with over 1,200m of ore driving available as shown in Figures 6 and 7.

Significant intercepts from exploration, resource extension and definition drilling include:

```
2.9m @ 36.0 g/t
                       Inc.
                             1.5m @ 66.6 g/t o
                                                                     Inc.
                                                                            0.7m @ 41.8 g/t
                                                  1.4m @ 22.6 g/t
                       Inc.
                             1.6m @ 39.5 g/t
                                                                     Inc.
                                                  3.9m @ 7.7 g/t
                                                                            2.4m @ 11.7 g/t
  7.8m @ 9.7 g/t
  4.0m @ 14.2 g/t
                       Inc.
                             1.0m @ 55.2 g/t
                                                  3.8m @ 7.8 g/t
                                                                     Inc.
                                                                            1.0m @ 22.7 g/t
   2.9m @ 18.9 g/t
                       Inc.
                             1.7m @ 30.1 g/t
                                                  3.6m @ 8.1 g/t
                                                                     Inc.
                                                                            1.0m @ 26.5 g/t
                       Inc.
                                                                     Inc.
o 4.0m @ 12.7 g/t
                             1.4m @ 26.8 g/t
                                             o 6.0m @ 4.7 g/t
                                                                            0.9m @ 13.4 g/t
                       Inc.
                             2.0m @ 11.9 g/t
                                                                     Inc.
                                                                            1.0m @ 25.6 g/t
   6.2m @ 7.9 g/t
                                                  2.0m @ 13.9 g/t
                              0.4m @ 29.0 g/t
   5.2m @ 9.3 g/t
                       Inc.
                                              o 4.4m @ 5.4 g/t
                                                                     Inc.
                                                                            1.6m @ 10.1 g/t
                       Inc.
                             0.9m @ 38.6 g/t | 0 3.0m @ 7.7 g/t
                                                                     Inc.
                                                                            1.7m @ 13.3 g/t
  1.3m @ 27.2 g/t
  2.4m @ 14.1 g/t
                       Inc.
                             1.2m @ 23.6 g/t
                                                  0.8m @ 25.8 g/t
                                                                     Inc.
                                                                            0.4m @ 54.6 g/t
                       Inc.
                                                                     Inc.
   3.0m @ 7.6 g/t
                             1.0m @ 10.3 g/t
                                                  0.6m @ 34.1 g/t
                                                                            0.3m @ 66.5 g/t
```

Ora Banda remains committed to expanding the known mineralisation system at Riverina and currently has two surface diamond drilling rigs and two underground diamond rigs dedicated to resource extension and definition drilling at Riverina Underground. Drilling continues to ramp up with further infill and extensional drilling planned ahead of anticipated Mineral Resource Estimate upgrades in H1 FY26.

Little Gem

Ora Banda has also embarked upon a grass roots exploration program 2.5km south of the Riverina Underground at the Little Gem prospect, as part of a State Government Exploration Incentive Scheme funded drilling program.

The initial hole was targeting stratigraphy 150m – 200m below surface and identified a potential new multi lode system (see Figures 9 and 10). The initial hole produced outstanding results with three intersections returned from three individually mineralised structures including:

- o 4.6m @ 7.4 g/t
- o 5.3m @ 3.3 g/t
- o 4.4m @ 3.4 g/t

A further 4 holes have been drilled at Little Gem that are currently awaiting assay return.

Importantly, the host rocks for these structures have been identified as the metasediment units that form part of the hanging wall sequence in the Riverina Underground. This sequence hosts the Murchison, Reggies and Durham lode systems. The actual basalt sequence that hosts the high-

grade Riverina ore lodes sits to the immediate west of the Little Gem discovery hole and is yet to be tested at this location.

Ora Banda geologists have continued to develop and evolve the exploration model associated with the Little Gem prospect and have planned additional holes to test the regional extent of this mineralisation.

Ora Banda Board Approved Expenditure

As a result of the outstanding drill results, the Ora Banda Board has approved additional spend of \$45 million in FY25 to rapidly advance drill programs and infrastructure to support further growth as follows:

- Additional \$16 million on Exploration and Resource Development drilling to focus on further drilling at Riverina; this will take total exploration expenditure from \$25 million planned in FY25 to \$41 million
- Additional \$29 million in Capital expenditure to enhance and set infrastructure up for growth; this will take total Capital expenditure from \$63 million planned in FY25 (including Sand King ramp up to steady state) to \$92 million including:
 - ~\$10 million in further camp expansions
 - ~\$10 million in mine development including drill drives and support infrastructure
 - ~\$9 million in ancillary projects

Ora Banda's Managing Director, Luke Creagh, said:

"The significant results that are flowing from deeper drilling at Riverina Underground are nothing short of remarkable and point to a future step change for the business as we can now see through to a multi-year expansion in mine life.

"Equally as exciting has been the first hole, a potential greenfields discovery, at Little Gem. The tenor of Little Gem's mineralisation and its multi-lode structure exemplifies the highly prospective nature of the Riverina trend. We will be following up the discovery hole and other prospects to the south as a priority.

"With the potential value creation that extending and expanding Riverina presents, the additional exploration and capital spend approved by the Board sets Ora Banda on the path of rapidly realising further value from the drill bit"

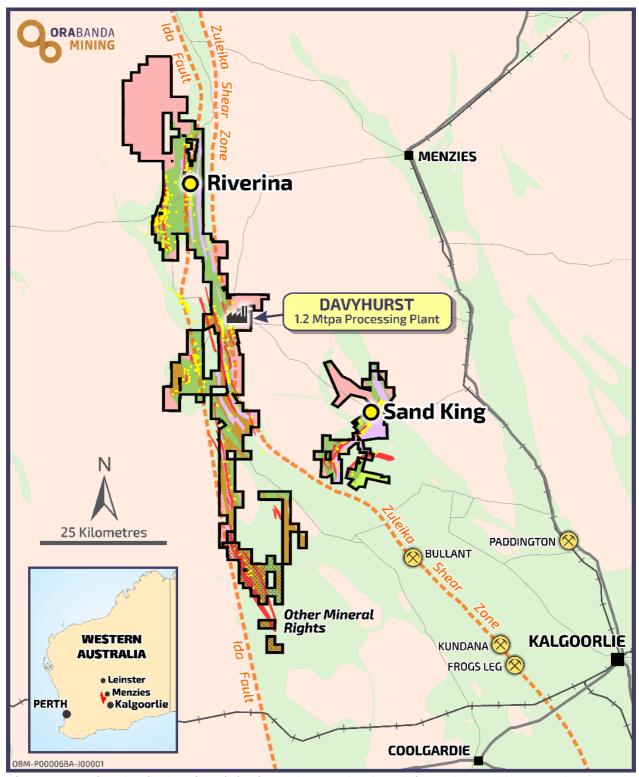


Figure 1 – Overview showing location of Riverina Underground and Sand King Underground compared to Davyhurst processing hub.

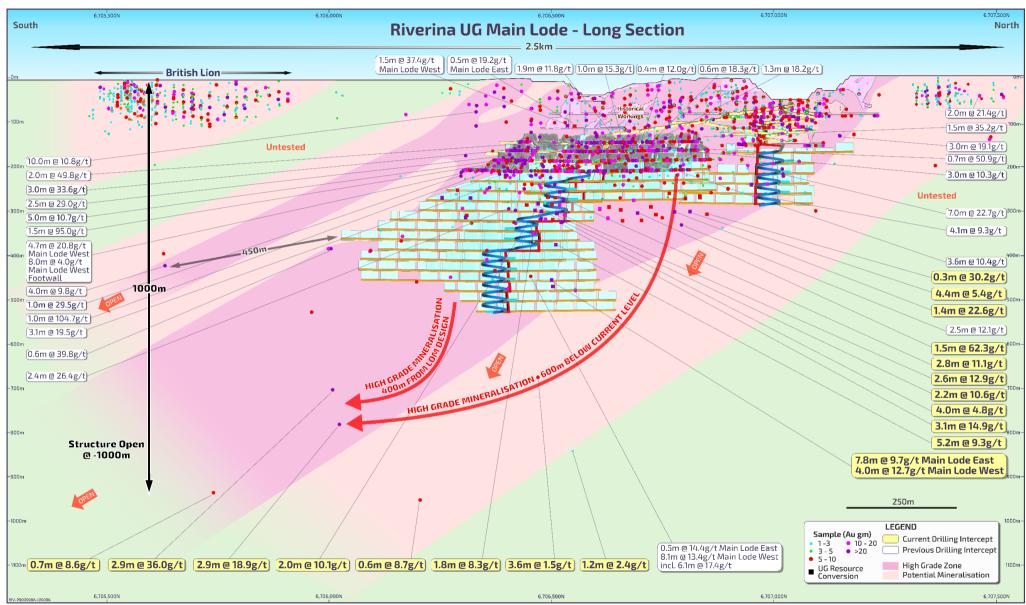


Figure 2 – Long Section Main Lode East looking west showing 2.5km x 1km exploration search space.

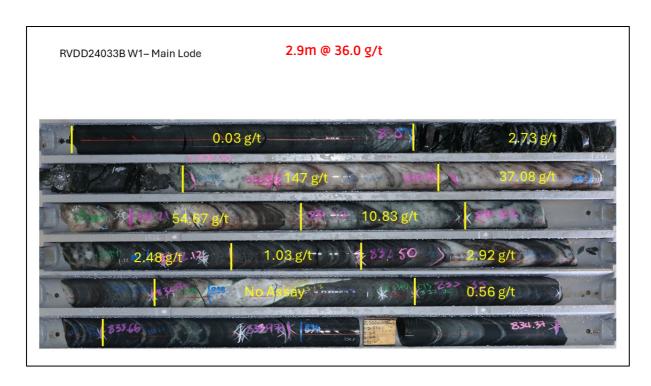


Figure 3 – Core photos of RVDD24033B – W1 – showing assay data on a consistent high-grade quartz lode intersected in good ground condition and at its anticipated position. This is a wedge hole that achieved 60 vertical metres separation from the parent hole shown below.

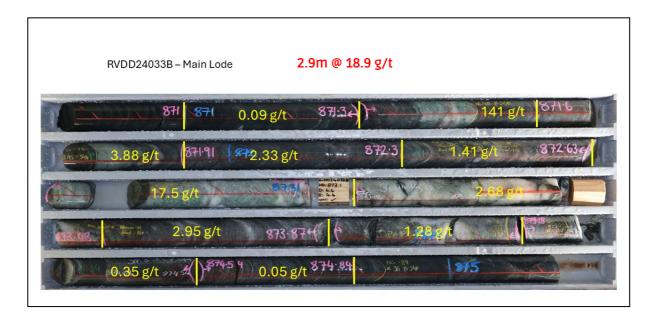


Figure 4 – Core photos of RVDD24033B – showing assay data on a consistent high-grade quartz lode intersected in good ground condition and at its anticipated position.

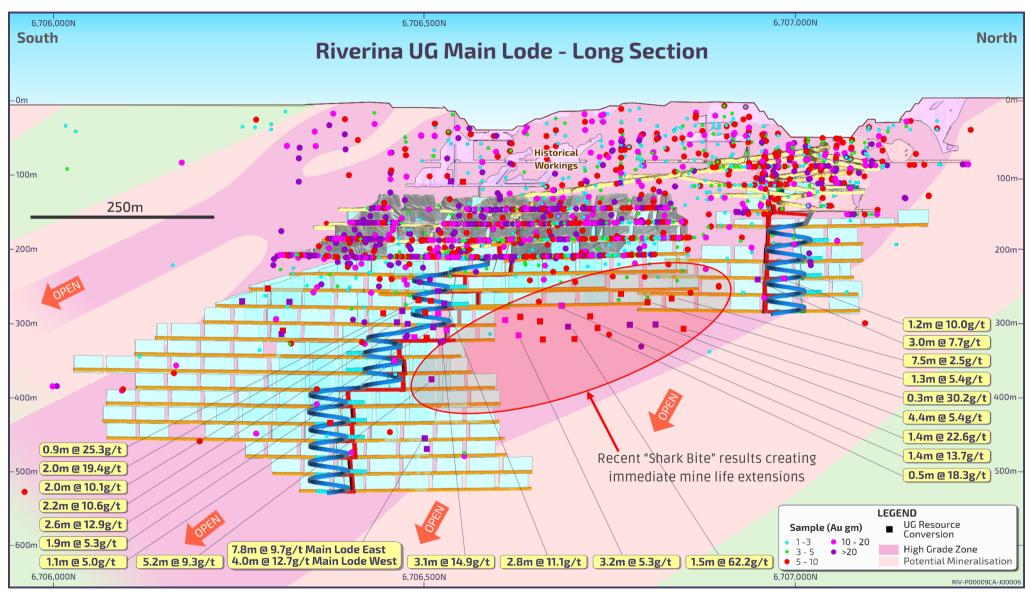


Figure 5 - Long Section Main Lode East looking west showing "Shark Bite" and recent underground infill diamond results.

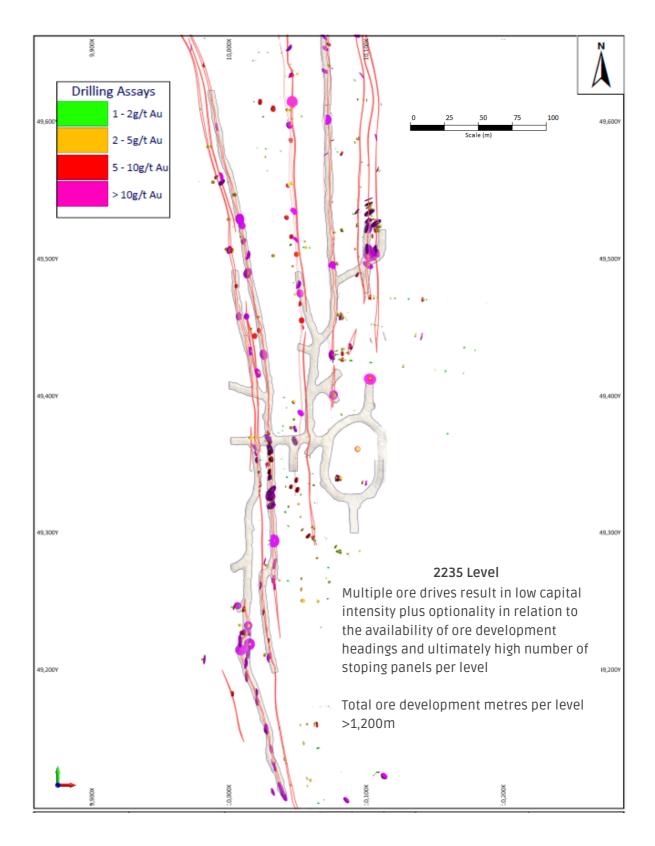


Figure 6 - 2235 Level Plan (4th level in the mine) showing multiple ore driving opportunities off each decline loop which demonstrates the low capital intensity of the Riverina Underground (South decline only).

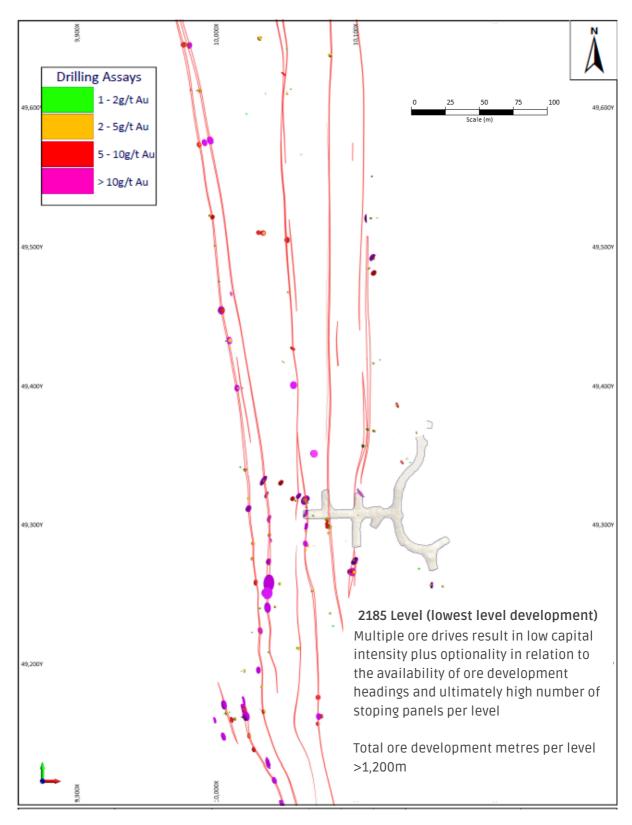


Figure 7 – 2185 Level Plan (6th level in the mine) showing multiple ore driving opportunities off each decline loop which demonstrates the low capital intensity of the Riverina Underground (South decline only).

Next Steps for Resource Development at Riverina Underground

Ora Banda remains committed to investing heavily in resource development drilling programs at the Riverina Undeground with the clear objective of growing the mine life (see Figure 8 below). The recent drilling has substantially extended the known boundaries of the main mineralised structures, however significantly more drilling is required to convert these highly encouraging results into a Mineral Resource Estimate and the subsequent Ore Reserve Estimate.

Two surface diamond drilling rigs and two underground diamond rigs dedicated to resource development drilling are continuing work at Riverina. Drilling will continue to ramp up with further infill and extensional drilling planned ahead of anticipated Mineral Resource Estimate upgrades in H1 FY26.

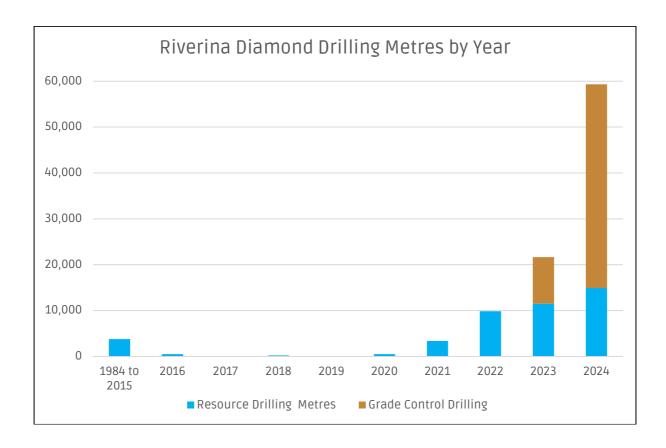


Figure 8 – Graph showing increasing drill metres per year dedicated to the Riverina Underground.

Exploration Drilling Update for the Little Gem Prospect

In October 2024 the Company undertook regional reconnaissance drilling around the greater Riverina area, following a successful grant received via the State Government, Exploration Incentive Scheme. This resulted in two holes being drilled, one at the Little Gem Prospect and the other at the Ace prospect.

The initial Little Gem hole (LGDD24001) was designed to test a major mineralised shear trending from Riverina Underground through to Sunraysia prospect 7.5 km to the south of Riverina. This shear runs parallel to and immediately east of the latest GSWA-interpreted position of the Ida Fault, but may also be related to this major regional structure. The hole was designed to intersect this shear beneath highly anomalous gold (19m @ 0.78g/t (EOH) including 7m @ 1.7g/t) intersected in aircore drilling during 2021 by Ora Banda.

Three significant high-grade gold zones were intersected in LGDD24001 (@ 1g/t lower cut):

5.3m @ 3.3g/t Au (Inc. 0.8m @ 10.8g/t Au)
 4.5m @ 7.4g/t Au (Inc. 1.5m @ 12.6g/t Au)
 4.4m @ 3.4g/t Au (Inc. 1.6m @ 6.7g/t Au)

These three intersections are associated with a distinct white brecciated carbonate unit.

An initial follow up program of diamond drilling at Little Gem, targeting extensions to the significant results from the EIS hole (LGDD24001), has been completed with 5 holes for 1,848.7m. All holes have intersected varying thickness of the preferred carbonate host unit. The carbonate lodes are consistent in strike and depth extent, with all holes intersecting carbonate units where expected. This has established >1.6km strike to the preferred host down to 400m vertical depth. All follow up holes are currently awaiting assay return.

Furthermore, the final hole (LGDD25005) intersected an additional lode ~200m to the east of the main Little Gem lodes, this is called the Sapphire lode and is supported by mapping and anomalous gold in historical AC drilling for a strike length of >1.7km.

Hole ACDD24001 at the Ace prospect was designed to intersect a North-South trending magnetic high anomaly corresponding to a perceived silica-magnetite-sulphide alteration halo within a diorite intrusive with coincident gold-copper auger anomaly directly overlying. Small historical gold workings occur in saprock overlying the magnetic anomaly.

Two significant gold zones were intersected in ACDD24001:

A narrow medium grade Au zone returning (@ 0.1g/t lower cut)

- 2.4m @ 3.8g/t Au
- Inc. 0.9m @ 7.8g/t Au

A broad zone of low-grade Au-Cu returning (@ 0.1g/t lower cut)

• 83m @ 0.3g/t Au, 0.14% Cu, 1.4g/t Ag & 6.8ppm Mo

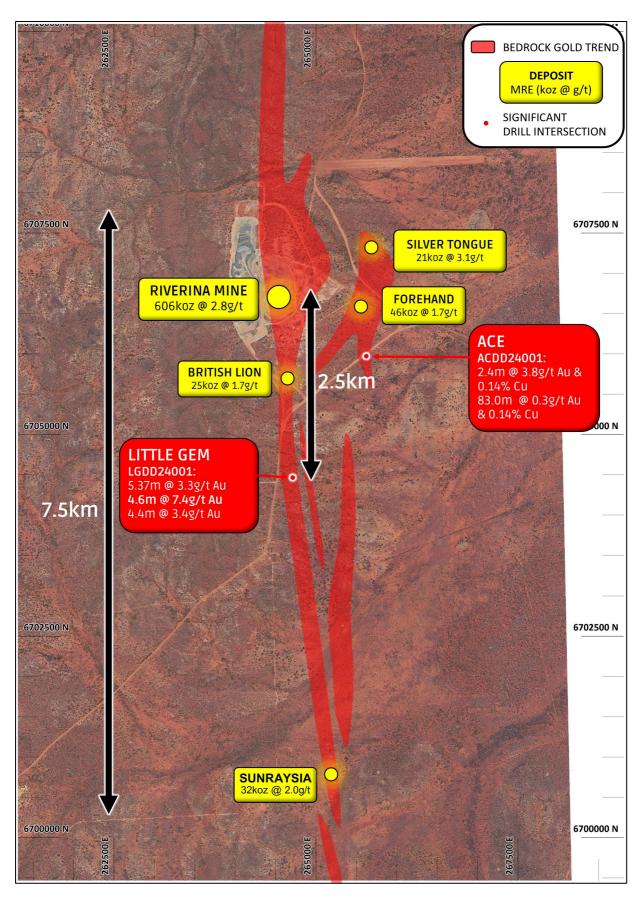


Figure 9 – Location plan showing Little Gem and Ace in relation to the Riverina Underground.

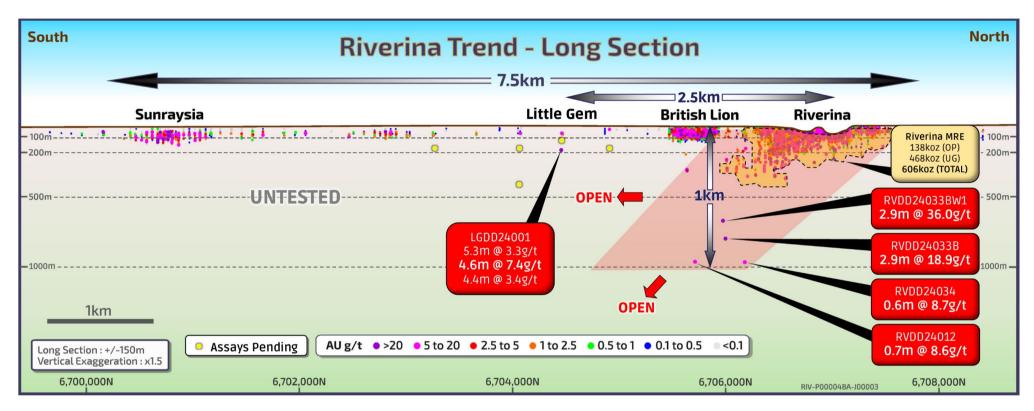


Figure 10 – Regional Long section showing Little Gem in relation to the Riverina Underground (noting x1.5 Vertical Exaggeration).

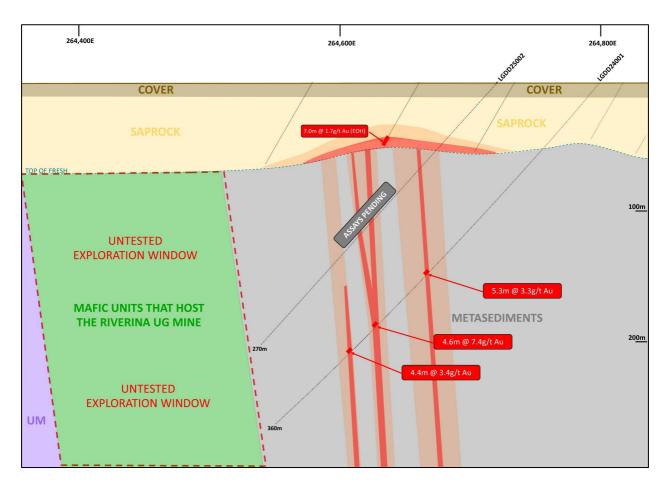


Figure 11 – Cross section showing Little Gem discovery hole (LGD24001) and follow-up hole (assays pending).

4.55m @ 7.37 g/t Au from 250.5m Incl 1.55m @ 12.59 g/t Au from 251.8m

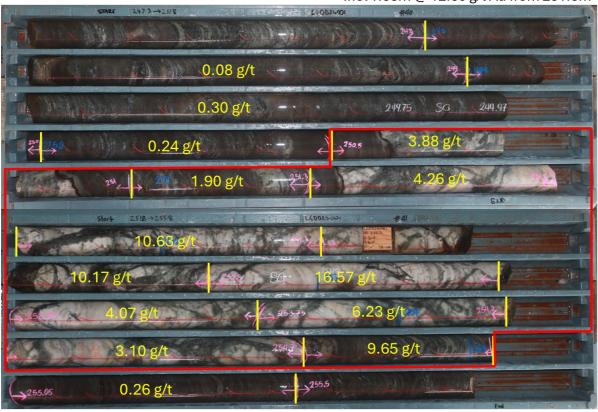


Figure 12 – Little Gem discovery hole (LGD24001) core photos showing individual assay returns.

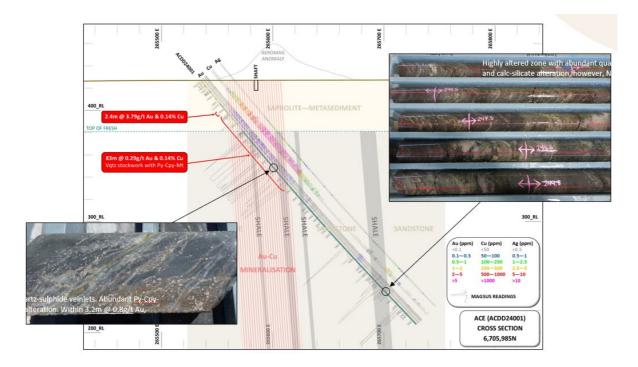


Figure 13 – Cross section and core photos showing initial Ace prospect holes and assay returns.

This announcement was authorised for release to the ASX by the Ora Banda Board of Directors.

For further information about Ora Banda Mining Ltd and its projects please visit the Company's website at www.orabandamining.com.au.

Investor & Media Queries:

Luke Creagh
Managing Director
+61 8 6365 4548
admin@orabandamining.com.au

Competent Persons Statement

The information in this announcement that relates to new exploration results is based on, and fairly represents, information and supporting documentation prepared by Mr Andrew Czerw, an employee of Ora Banda Mining Limited, who is a Member of the Australian Institute of Mining and Metallurgy. Mr Czerw has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Czerw consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

The information in this announcement that relates to prior Riverina exploration results has been extracted from the Company's ASX announcements set out below, which are available to view at www.orabandamining.com.au. The Company confirms that it is not aware of any new information or data that materially affects the information included in those ASX announcements. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from those ASX announcements.

- 'Davyhurst Gold Project Update' dated 3 September 2024
- 'Riverina Underground & Sand King Update' dated 4 April 2024
- 'Company Update Key Milestones Achieved' dated 28 November 2023
- 'Exploration Update' dated 3 August 2023
- 'Exploration Update' dated 16 May 2023
- 'Riverina Exploration Update' dated 10 February 2023
- 'Riverina Exploration Update' dated 7 December 2022
- 'Riverina Exploration Update' 19 October 2022
- 'Riverina Underground Infill and Extension Drilling Delivers Strong Results' dated 2 August 2021
- 'First Pass Exploration Success Grass roots exploration intersects significant mineralisation' dated 30 July 2021
- 'Riverina South & Riverina Underground Infill and Extension Drilling Delivers Further Strong Results' dated 8 March 2021
- 'Infill Drilling at Riverina South Delivers Further Strong Results' dated 10 February 2021
- 'Further Strong Results from Riverina South' dated 10 August 2020
- 'Initial Drilling at Riverina South Delivers Strong Results' dated 9 April 2020
- 'First Phase of Drilling at Riverina Finalised Upgraded Minerals Resource Estimate Underway' dated 8 October 2019
- 'High Grade Results from Riverina Phase 1 Drilling Continue' dated 16 September 2021
- 'High Grade Assay Results Continue at Riverina' dated 26 August 2019
- 'High Grade Assay Results Received including 23m@9.1g/t Au' dated 29 July 2019
- 'Riverina Drilling Update' dated 17 April 2018

The information in this announcement that relates to Mineral Resources and Ore Reserves are set out in the Company's ASX announcement, 'Mineral Resource and Ore Reserve Statement' dated 2 July 2024, which is available to view at www.orabandamining.com.au. The Company confirms that it is not aware of any new information or data that materially affects the information included in that announcement and that all material assumptions and technical parameters underpinning the estimates in that announcement continue to apply and have not materially changed.

Forward-looking Statements

This announcement contains forward-looking statements which may be identified by words such as "believes", "estimates", "expects', "intends", "may", "will", "would", "could", or "should" and other similar words that involve risks and uncertainties. These statements are based on an assessment of present economic and operating conditions, and on a number of assumptions regarding future events and actions that, as at the date of this announcement, are expected to take place.

Such forward-looking statements are not guarantees of future performance and involve known and unknown risks, uncertainties, assumptions and other important factors, many of which are beyond the control of the Company, the Directors and management of the Company. These and other factors could cause actual results to differ materially from those expressed in any forward-looking statements.

The Company has no intention to update or revise forward-looking statements, or to publish prospective financial information in the future, regardless of whether new information, future events or any other factors affect the information contained in this announcement, except where required by law. The Company cannot and does not give assurances that the results, performance or achievements expressed or implied in the forward-looking statements contained in this announcement will actually occur and investors are cautioned not to place undue reliance on these forward-looking statements.

Appendix 1 – Significant Intersections Table – Ora Banda Drill holes

(1g/t cut-off, maximum 2m internal dilution, minimum width 0.2m)

GREATER RIVERINA AREA

Project	Hole ID	MGA	MGA	RL	Azi	Dip	End	Depth	Depth	Gram Metres	Au g/t interval	Cut-off
RIVERINA	RCV24315	North 6706641	264533	260	254	-69	Depth 168	From 11	To 17	28.0	6.0m @ 4.7 g/t	1
	RCV24315							Incl 14.07	15	12.4	0.9m @ 13.4 g/t	10
	RCV24315							54	55	3.5	1.0m @ 3.5 g/t	1
	RCV24315							113.5	115.52	8.8	2.0m @ 4.4 g/t	1
	RCV24315							Incl 114.92	115.22	4.6	0.3m @ 15.2 g/t	10
	RCV24315							140	143.24	17.1	3.2m @ 5.3 g/t	1
	RCV24315							Incl 141.80	142.13	7.1	0.3m @ 21.6 g/t	10
RIVERINA	RGC24406	6706710	264585	236	284	-40	176	0	3.9	7.1	3.9m @ 1.8 g/t	1
	RGC24406							8	11.2	10.4	3.2m @ 3.2 g/t	1
	RGC24406							Incl 10.09	10.39	8.7	0.3m @ 28.9 g/t	10
	RGC24406							41.31	43.33	2.3	2.0m @ 1.2 g/t	1
	RGC24406							50.85	51.34	0.5	0.5m @ 1.1 g/t	1
	RGC24406							81	81.79	0.9	0.8m @ 1.1 g/t	1
	RGC24406							148.25	148.7	8.2	0.5m @ 18.3 g/t	1
	RGC24406							154	155	1.5	1.0m @ 1.5 g/t	1
RIVERINA	RGC24407	6706696	264583	235	268	-44	168	1.8	5	9.6	3.2m @ 3.0 g/t	1
	RGC24407							7.8	11	46.8	3.2m @ 14.6 g/t	1
	RGC24407							Incl 7.80	9.36	44.1	1.6m @ 28.2 g/t	10
	RGC24407							17.47	18	0.6	0.5m @ 1.2 g/t	1
	RGC24407							25	26	1.4	1.0m @ 1.4 g/t	1
	RGC24407							40.04	43.5	7.0	3.5m @ 2.0 g/t	1
	RGC24407							48	49	1.1	1.0m @ 1.1 g/t	1
	RGC24407							52	53	6.3	1.0m @ 6.3 g/t	1
	RGC24407							78.97	82	11.0	3.0m @ 3.6 g/t	1
	RGC24407							101	102	1.0	1.0m @ 1.0 g/t	1
	RGC24407							137.17	138.69	94.6	1.5m @ 62.2 g/t	1
	RGC24407							Incl 137.17	137.51	91.1	0.3m @ 268.0 g/t	10
	RGC24407							147.96	149.53	12.3	1.6m @ 7.8 g/t	1
	RGC24407							Incl 149.04	149.53	5.9	0.5m @ 12.0 g/t	10
RIVERINA	RGC24408	6706696	264583	235	234	-39	170	0.83	11.76	61.9	10.9m @ 5.7 g/t	1
	RGC24408							Incl 1.90	2.22	14.3	0.3m @ 44.7 g/t	10
	RGC24408							Incl 5.27	5.57	19.8	0.3m @ 65.9 g/t	10
	RGC24408							Incl 10.46	10.76	18.0	0.3m @ 60.2 g/t	10
	RGC24408							19.91	20.63	2.5	0.7m @ 3.5 g/t	1
	RGC24408							40.33	40.63	0.6	0.3m @ 1.9 g/t	1
	RGC24408							43.87	49	27.3	5.1m @ 5.3 g/t	1
	RGC24408							Incl 44.17	44.94	22.2	0.8m @ 28.8 g/t	10
	RGC24408							54.77	57.45	3.2	2.7m @ 1.2 g/t	1
	RGC24408							86	86.3	0.4	0.3m @ 1.2 g/t	1
	RGC24408							87.43	87.82	1.0	0.4m @ 2.5 g/t	1
	RGC24408							106.13	108.11	3.7	2.0m @ 1.9 g/t	1
	RGC24408							142.13	142.57	3.7	0.4m @ 8.5 g/t	1
	RGC24408							155.8	157.89	10.4	2.1m @ 5.0 g/t	1
	RGC24408							Incl 157.21	157.59	6.1	0.4m @ 16.0 g/t	10
RIVERINA	RGC24432	6706484	264570	216	303	-20	116	15	16	3.4	1.0m @ 3.4 g/t	1
	RGC24432							22	22.46	1.2	0.5m @ 2.6 g/t	1
	RGC24432							34.6	35.27	1.3	0.7m @ 1.9 g/t	1
	RGC24432							40.3	43.3	15.0	3.0m @ 5.0 g/t	1
	RGC24432							Incl 40.62	40.92	9.3	0.3m @ 30.9 g/t	10
	RGC24432							56.42	57	0.6	0.6m @ 1.0 g/t	1
	RGC24432							77.17	78.07	22.8	0.9m @ 25.3 g/t	1
	RGC24432							Incl 77.47	78.07	21.9	0.6m @ 36.5 g/t	10
	RGC24432							93.53	95.35	3.0	1.8m @ 1.7 g/t	1
	RGC24432							98	98.97	1.6	1.0m @ 1.6 g/t	1

Duciant	Hele ID	MGA	MGA	DI.	٥-:	Dim.	End	Depth	Depth	Gram	A a/A into mal	Cut off
Project	Hole ID	North	East	RL	Azi	Dip	Depth	From	То	Metres	Au g/t interval	Cut-off
RIVERINA	RGC24433	6706484	264570	216	306	-30	126	23	25	2.8	2.0m @ 1.4 g/t	1
	RGC24433							40	41	1.4	1.0m @ 1.4 g/t	1
	RGC24433							42	43	1.5	1.0m @ 1.5 g/t	1
	RGC24433							45.85	47	2.6	1.2m @ 2.2 g/t	1
	RGC24433							51.85	53	7.6	1.2m @ 6.6 g/t	1
	RGC24433							Incl 51.85	52.5	6.8	0.7m @ 10.5 g/t	10
	RGC24433							70	71	8.6	1.0m @ 8.6 g/t	1
	RGC24433							88.2	91	31.1	2.8m @ 11.1 g/t	1
	RGC24433							Incl 88.20	90.05	30.1	1.9m @ 16.3 g/t	10
	RGC24433							101.7	102.21	9.3	0.5m @ 18.3 g/t	1
	RGC24433							106	107.9	3.2	1.9m @ 1.7 g/t	1
	RGC24433							113.8	114.3	0.6	0.5m @ 1.2 g/t	1
RIVERINA	RGC24443	6706482	264571	217	259	-45	116	16.03	16.42	1.0	0.4m @ 2.5 g/t	1
	RGC24443							18.5	19	1.0	0.5m @ 2.1 g/t	1
	RGC24443							22	23	12.7	1.0m @ 12.7 g/t	1
	RGC24443							Incl 22.00	22.61	9.3	0.6m @ 15.3 g/t	10
	RGC24443							44.5	45.2	3.4	0.7m @ 4.9 g/t	1
	RGC24443							Incl 44.90	45.2	3.0	0.3m @ 10.0 g/t	10
	RGC24443							62	63	1.3	1.0m @ 1.3 g/t	1
	RGC24443							78	80	38.9	2.0m @ 19.4 g/t	1
	RGC24443							Incl 78.70	80	35.9	1.3m @ 27.6 g/t	10
	RGC24443							99.25	99.55	1.0	0.3m @ 3.2 g/t	1
	RGC24443							104	104.3	0.3	0.3m @ 1.0 g/t	1
RIVERINA	RGC24447	6706484	264570	217	297	-48	141	26	28.5	8.9	2.5m @ 3.5 g/t	1
	RGC24447							43	44	1.9	1.0m @ 1.9 g/t	1
	RGC24447							51	51.6	1.4	0.6m @ 2.4 g/t	1
	RGC24447							80	80.4	0.4	0.4m @ 1.1 g/t	1
	RGC24447							81.2	82	1.3	0.8m @ 1.6 g/t	1
	RGC24447							102.55	105.1	32.8	2.6m @ 12.9 g/t	1
	RGC24447							Incl 103.95	104.8	30.7	0.9m @ 36.2 g/t	10
	RGC24447							123.3	126.8	11.4	3.5m @ 3.3 g/t	1
	RGC24447							Incl 125.95	126.8	9.4	0.9m @ 11.1 g/t	10
RIVERINA	RGC24449	6706484	264570	216	302	-52	159	0	1	7.4	1.0m @ 7.4 g/t	1
	RGC24449							29	31.14	5.8	2.1m @ 2.7 g/t	1
	RGC24449							50	50.7	0.7	0.7m @ 1.0 g/t	1
	RGC24449							59.06	59.78	8.7	0.7m @ 12.1 g/t	1
	RGC24449							70.24	70.92	1.0	0.7m @ 1.4 g/t	1
	RGC24449							97	98	6.1	1.0m @ 6.1 g/t	1
	RGC24449							117	118	1.4	1.0m @ 1.4 g/t	1
	RGC24449							122	125.06	45.6	3.1m @ 14.9 g/t	1
	RGC24449							Incl 123.15	125.06	43.2	1.9m @ 22.6 g/t	10
	RGC24449							126.23	127.25	4.2	1.0m @ 4.1 g/t	1
	RGC24449							146.5	151.3	15.3	4.8m @ 3.2 g/t	1
	RGC24449							Incl 149.70	150.1	4.5	0.4m @ 11.4 g/t	10
RIVERINA	RGC24451	6706483	264571	216	276	-58	153	26.7	28.85	3.9	2.2m @ 1.8 g/t	1
	RGC24451							56	57.22	6.5	1.2m @ 5.4 g/t	1
	RGC24451							Incl 56.58	56.88	3.9	0.3m @ 13.1 g/t	10
	RGC24451							106	110	19.3	4.0m @ 4.8 g/t	1
	RGC24451							Incl 108.27	109.05	16.3	0.8m @ 20.9 g/t	10
	RGC24451							135	136	1.4	1.0m @ 1.4 g/t	1
	RGC24451							146	147	1.1	1.0m @ 1.1 g/t	1
RIVERINA	RGC24452	6706477	264572	216	267	-52	131	25.05	26	3.1	1.0m @ 3.3 g/t	1
	RGC24452		2			52	101	42.05	44	2.1	2.0m @ 1.1 g/t	1
	RGC24452							50	50.3	1.1	0.3m @ 3.6 g/t	1
									94	23.7		
	RGC24452							91.76			2.2m @ 10.6 g/t	1
	RGC24452							Incl 91.76	92.5	20.9	0.7m @ 28.3 g/t	10

Project	Hole ID	MGA North	MGA East	RL	Azi	Dip	End Depth	Depth	Depth To	Gram Metres	Au g/t interval	Cut-off
RIVERINA	RGC24453	6706482		216	252	-51	135	From 21	22	1.0	1.0m @ 1.0 g/t	1
	RGC24453							24.85	25.31	1.8	0.5m @ 3.9 g/t	1
	RGC24453							51.51	51.82	0.9	0.3m @ 2.8 g/t	1
	RGC24453							65.95	66.35	5.8	0.4m @ 14.4 g/t	1
	RGC24453							90.72	92.76	20.7	2.0m @ 10.1 g/t	1
	RGC24453							Incl 91.10	91.7	16.6	0.6m @ 27.6 g/t	10
	RGC24453							111.55	111.96	2.7	0.4m @ 6.5 g/t	1
RIVERINA	RRD24321	6706797	264540	263	255	-59	192	23.3	23.7	0.8	0.4m @ 1.9 g/t	1
	RRD24321							36.43	37.35	1.3	0.9m @ 1.5 g/t	1
	RRD24321							43.8	44.1	0.5	0.3m @ 1.6 g/t	1
	RRD24321							63.34	63.67	0.6	0.3m @ 1.7 g/t	1
	RRD24321							84.3	85	1.2	0.7m @ 1.7 g/t	1
	RRD24321							141	142.35	30.5	1.4m @ 22.6 g/t	1
	RRD24321							Incl 141.30	142	29.3	0.7m @ 41.8 g/t	10
	RRD24321							145.37	146.3	1.7	0.9m @ 1.9 g/t	1
	RRD24321							148.7	149.13	0.7	0.4m @ 1.7 g/t	1
RIVERINA	RRD24323	6706828	264538	264	258	-57	195	23.8	24.1	0.9	0.3m @ 2.9 g/t	1
	RRD24323							30.84	34	5.2	3.2m @ 1.7 g/t	1
	RRD24323							39.75	40.05	0.4	0.3m @ 1.4 g/t	1
	RRD24323							143.7	148.1	23.8	4.4m @ 5.4 g/t	1
	RRD24323							Incl 143.70	145.3	16.1	1.6m @ 10.1 g/t	10
	RRD24323							148.3	148.85	1.3	0.6m @ 2.4 g/t	1
RIVERINA	RRD24324	6706828	264538	264	274	-46	162	66	67	1.1	1.0m @ 1.1 g/t	1
	RRD24324							83.11	83.44	0.3	0.3m @ 1.0 g/t	1
	RRD24324							117.2	124.69	19.0	7.5m @ 2.5 g/t	1
	RRD24324							Incl 117.20	117.51	3.4	0.3m @ 10.8 g/t	10
	RRD24324							126.76	128.5	5.0	1.7m @ 2.9 g/t	1
RIVERINA	RRD24325	6706828	264538	264	283	-54	197	30.58	31.56	1.2	1.0m @ 1.3 g/t	1
	RRD24325							38.87	39.17	0.3	0.3m @ 1.1 g/t	1
	RRD24325							69.5	69.8	0.5	0.3m @ 1.5 g/t	1
	RRD24325							156.85	157.17	9.7	0.3m @ 30.2 g/t	1
RIVERINA	RRD24382	6706453	264621	272	228	-64	359	20	21	1.8	1.0m @ 1.8 g/t	1
	RRD24382							26	26.4	0.5	0.4m @ 1.3 g/t	1
	RRD24382							41	44	5.9	3.0m @ 2.0 g/t	1
	RRD24382							48.6	48.9	0.3	0.3m @ 1.2 g/t	1
	RRD24382							78.9	79.47	0.7	0.6m @ 1.3 g/t	1
	RRD24382							79.62	79.92	0.3	0.3m @ 1.2 g/t	1
	RRD24382							160	162	2.6	2.0m @ 1.3 g/t	1
	RRD24382							292.9	294	5.5	1.1m @ 5.0 g/t	1
	RRD24382							313.7	314.55	1.8	0.9m @ 2.1 g/t	1
RIVERINA	RRD24384	6706448	264625	272	273	-62	287	18	19	1.3	1.0m @ 1.3 g/t	1
	RRD24384							23	23.44	2.0	0.4m @ 4.5 g/t	1
	RRD24384							26.78	29.22	6.3	2.4m @ 2.6 g/t	1
	RRD24384							45.25	45.66	0.8	0.4m @ 1.8 g/t	1
	RRD24384							94.61	100.82	48.8	6.2m @ 7.9 g/t	1
	RRD24384							Incl 96.96	99	24.3	2.0m @ 11.9 g/t	10
	RRD24384							120	121.04	2.2	1.0m @ 2.1 g/t	1
	RRD24384							162.26	162.76	1.2	0.5m @ 2.4 g/t	1
	RRD24384							170.44	170.74	1.9	0.3m @ 6.3 g/t	1
	RRD24384							179.25	179.55	0.5	0.3m @ 1.6 g/t	1
	RRD24384							190.6	191	0.8	0.4m @ 2.0 g/t	1
	RRD24384							206.5	208.38	10.0	1.9m @ 5.3 g/t	1
	RRD24384							Incl 208.08	208.38	4.6	0.3m @ 15.2 g/t	10
	RRD24384							228.32	230.23	2.8	1.9m @ 1.5 g/t	1

Project	Hole ID	MGA	MGA	RL	Azi	Dip	End	Depth	Depth	Gram	Au g/t interval	Cut-off
RIVERINA	RRD24385	North 6706453	264621	272	291	-66	Depth 422	From 119	To 123.87	Metres 8.1	4.9m @ 1.7 g/t	1
	RRD24385							126	126.3	0.3	0.3m @ 1.2 g/t	1
	RRD24385							138	138.53	0.7	0.5m @ 1.2 g/t	1
	RRD24385							151	156.98	13.3	6.0m @ 2.2 g/t	1
	RRD24385							Incl 156.33	156.98	7.8	0.7m @ 12.0 g/t	10
	RRD24385							163	164	1.9	1.0m @ 1.9 g/t	1
	RRD24385							187	189	3.2	2.0m @ 1.6 g/t	1
	RRD24385							195	198	7.3	3.0m @ 2.4 g/t	1
	RRD24385							Incl 195.00	195.31	3.6	0.3m @ 11.6 g/t	10
	RRD24385							217.54	219.73	6.1	2.2m @ 2.8 g/t	1
	RRD24385							255	256	2.1	1.0m @ 2.1 g/t	1
	RRD24385							263	265	5.9	2.0m @ 3.0 g/t	1
	RRD24385							304.5	305	1.9	0.5m @ 3.9 g/t	1
	RRD24385							308.23	316	75.7	7.8m @ 9.7 g/t	1
	RRD24385							Incl 308.60	310.19	62.8	1.6m @ 39.5 g/t	10
	RRD24385							326.26	330.21	50.1	4.0m @ 12.7 g/t	1
	RRD24385							Incl 326.56	328	38.5	1.4m @ 26.8 g/t	10
RIVERINA	RRD24386	6706453	264621	272	297	-59	293	26	29.45	5.7	3.5m @ 1.6 g/t	1
	RRD24386							34	37	5.8	3.0m @ 1.9 g/t	1
	RRD24386							65.5	66.05	0.6	0.6m @ 1.0 g/t	1
	RRD24386							108	109	1.1	1.0m @ 1.1 g/t	1
	RRD24386							116.3	121	4.9	4.7m @ 1.1 g/t	1
	RRD24386							126.6	127.2	20.4	0.6m @ 34.1 g/t	1
	RRD24386							Incl 126.90	127.2	20.0	0.3m @ 66.5 g/t	10
	RRD24386							131	131.45	1.2	0.5m @ 2.7 g/t	1
	RRD24386							172.65	175	18.3	2.4m @ 7.8 g/t	1
	RRD24386							Incl 173.40	174	15.1	0.6m @ 25.1 g/t	10
	RRD24386							200	201	9.7	1.0m @ 9.7 g/t	1
	RRD24386							240.05	245.2	47.8	5.2m @ 9.3 g/t	1
	RRD24386							Incl 240.05	240.4	10.1	0.4m @ 29.0 g/t	10
	RRD24386							Incl 242.00	244.9	30.8	2.9m @ 10.6 g/t	10
	RRD24386							267.05	268	4.9	1.0m @ 5.2 g/t	1
RIVERINA	RRD25002	6706947	264526	318	271	-48	171	21	23	6.4	2.0m @ 3.2 g/t	1
	RRD25002							33	34	1.7	1.0m @ 1.7 g/t	1
	RRD25002							38.96	42	8.6	3.0m @ 2.8 g/t	1
	RRD25002							48.9	49.2	3.0	0.3m @ 9.9 g/t	1
	RRD25002							73	74	1.2	1.0m @ 1.2 g/t	1
	RRD25002							113.74	114.26	1.8	0.5m @ 3.4 g/t	1
	RRD25002							153.28	156.3	23.3	3.0m @ 7.7 g/t	1
	RRD25002							Incl 153.58	155.23	21.9	1.7m @ 13.3 g/t	10
RIVERINA	RRD25003	6706947	264526	318	289	-43	183	39.4	43	29.2	3.6m @ 8.1 g/t	1
	RRD25003							Incl 42.00	43	26.5	1.0m @ 26.5 g/t	10
	RRD25003							49.7	50.3	4.3	0.6m @ 7.2 g/t	1
	RRD25003							140	141	1.3	1.0m @ 1.3 g/t	1
	RRD25003							162.45	163.65	12.0	1.2m @ 10.0 g/t	1
DIV/EDIALA	RRD25003	6705045	264040	420	272		020	Incl 162.75	163.2	10.4	0.5m @ 23.2 g/t	10
RIVERINA	RVDD24003	6705945	∠04848	438	212	-55	820	167	168	1.7	1.0m @ 1.7 g/t	1
	RVDD24003							198	199	2.7	1.0m @ 2.7 g/t	1
	RVDD24003 RVDD24003							411 423.53	412 424.96	1.5 3.1	1.0m @ 1.5 g/t	1
	RVDD24003 RVDD24003							423.53	424.96	0.6	1.4m @ 2.2 g/t 0.4m @ 1.4 g/t	1
	RVDD24003 RVDD24003							574	575		1.0m @ 1.3 g/t	1
	RVDD24003 RVDD24003							585.02	589.13	1.3 7.3	4.1m @ 1.8 g/t	1
	RVDD24003 RVDD24003							595.11	595.77	9.7	4.1m @ 1.8 g/t 0.7m @ 14.6 g/t	1
	RVDD24003 RVDD24003							Incl 595.11	595.77	8.5	0.7m @ 14.6 g/t 0.3m @ 27.3 g/t	10
	RVDD24003							649.06	649.39	0.5	0.3m @ 1.5 g/t	10
	RVDD24003							655.98	656.45	0.8	0.5m @ 1.8 g/t	1
	RVDD24003 RVDD24003							665.74	666.22	1.4	0.5m @ 1.8 g/t	1
	RVDD24003 RVDD24003							735.8	736.15	0.4	0.4m @ 1.1 g/t	1
										6.2		1
	RVDD24003							767.32	773	0.2	5.7m @ 1.1 g/t	1

Project	Hole ID	MGA North	MGA East	RL	Azi	Dip	End Depth	Depth From	Depth To	Gram Metres	Au g/t interval	Cut-off
RIVERINA	RVDD24006	6705860	264817	438	276	-49	250	87	88	2.1	1.0m @ 2.1 g/t	1
	RVDD24006							91	95	5.9	4.0m @ 1.5 g/t	1
	RVDD24006							101	105	56.8	4.0m @ 14.2 g/t	1
	RVDD24006							Incl 101.00	102	55.2	1.0m @ 55.2 g/t	10
	RVDD24006							108	110	6.7	2.0m @ 3.4 g/t	1
RIVERINA	RVDD24007	6705867	264925	437	275	-61	369	85	86	2.8	1.0m @ 2.8 g/t	1
	RVDD24007							270	272	4.0	2.0m @ 2.0 g/t	1
RIVERINA	RVDD24011	6705788	264856	438	274	-57	313	79	80	1.2	1.0m @ 1.2 g/t	1
RIVERINA	RVDD24012	6705781	264958	436	271	-58	1214	192	193	1.0	1.0m @ 1.0 g/t	1
	RVDD24012							415	418	3.4	3.0m @ 1.1 g/t	1
	RVDD24012							427.7	429	2.4	1.3m @ 1.9 g/t	1
	RVDD24012							457	458.04	2.6	1.0m @ 2.5 g/t	1
	RVDD24012							762.53	762.92	0.7	0.4m @ 1.7 g/t	1
	RVDD24012							831	832.48	3.4	1.5m @ 2.3 g/t	1
	RVDD24012							853.46	855.22	5.0	1.8m @ 2.9 g/t	1
	RVDD24012							957	958	1.2	1.0m @ 1.2 g/t	1
	RVDD24012							971.89	972.21	0.4	0.3m @ 1.4 g/t	1
	RVDD24012							975	976	1.1	1.0m @ 1.1 g/t	1
	RVDD24012							979	983	4.7	4.0m @ 1.2 g/t	1
	RVDD24012							1001.99	1003	1.0	1.0m @ 1.0 g/t	1
	RVDD24012							1009	1010	1.3	1.0m @ 1.3 g/t	1
	RVDD24012							1012.28	1013	6.2	0.7m @ 8.6 g/t	1
	RVDD24012							Incl 1012.58	1013	5.2	0.4m @ 12.4 g/t	10
	RVDD24012							1141	1143	3.3	2.0m @ 1.6 g/t	1
RIVERINA	RVDD24015	6705695	264797	437	276	-58	285	0	285	5.5	N.S.I.	1
	RVDD24015							28	284		N.S.I.	1
RIVERINA	RVDD24016	6705709	264895	436	272	-63	168	0	168		N.S.I.	1
	RVDD24016							44	52		N.S.I.	1
RIVERINA	RVDD24016A	6705709	264892	436	264	-66	228	0	228		N.S.I.	1
	RVDD24016A							48	160		N.S.I.	1
RIVERINA	RVDD24020	6705625	264861	435	272	-57	350	51	52	1.1	1.0m @ 1.1 g/t	1
	RVDD24020							162	163	2.1	1.0m @ 2.1 g/t	1
RIVERINA	RVDD24022	6705611	265041	433	271	-57	426	0	426		N.S.I.	1
	RVDD24022							308	408		N.S.I.	1
RIVERINA	RVDD24023	6705555	264702	439	268	-66	564	122	123	1.1	1.0m @ 1.1 g/t	1
	RVDD24023							164	165	1.2	1.0m @ 1.2 g/t	1
	RVDD24023							207.43	207.95	0.9	0.5m @ 1.7 g/t	1
	RVDD24023							209.12	209.54	0.5	0.4m @ 1.1 g/t	1
	RVDD24023							223	224.32	2.6	1.3m @ 2.0 g/t	1
	RVDD24023							228.48	229.37	1.2	0.9m @ 1.3 g/t	1
RIVERINA	RVDD24025	6705556	264905	435	271	-65	288	245	246	3.5	1.0m @ 3.5 g/t	1
RIVERINA	RVDD24028	6705470			274	-66	250	63	64	1.7	1.0m @ 1.7 g/t	1
RIVERINA	RVDD24030	6705463			267	-63	114	0	114		N.S.I.	1
	RVDD24030							28	48		N.S.I.	1
RIVERINA	RVDD24030A	6705463	264963	434	271	-61	366	64	65	1.6	1.0m @ 1.6 g/t	1
	RVDD24030A							98	99	2.3	1.0m @ 2.3 g/t	1
	RVDD24030A							183	184	1.0	1.0m @ 1.0 g/t	1
		1						229	230		1.0m @ 1.0 g/t	1
	RVDD24030A							223	230	1.0	1.0111@1.0 g/t	1

Project	Hole ID	MGA	MGA	RL	Azi	Dip	End	Depth	Depth	Gram	Au g/t interval	Cut-off
RIVERINA	RVDD24033A	North 6706049	East 264981	435	0	0	Depth 26	From 0	To 26	Metres	N.S.I.	1
RIVERINA	RVDD24033B	6706046	264974	435	273	-60	1028	115	116	1.6	1.0m @ 1.6 g/t	1
	RVDD24033B							150	151	2.5	1.0m @ 2.5 g/t	1
	RVDD24033B							266	267	12.1	1.0m @ 12.1 g/t	1
	RVDD24033B							273	274	1.8	1.0m @ 1.8 g/t	1
	RVDD24033B							279	283	9.0	4.0m @ 2.3 g/t	1
	RVDD24033B							304	305	1.6	1.0m @ 1.6 g/t	1
	RVDD24033B							315	316	2.8	1.0m @ 2.8 g/t	1
	RVDD24033B							320	322	3.8	2.0m @ 1.9 g/t	1
	RVDD24033B							351	353	3.0	2.0m @ 1.5 g/t	1
											-	
	RVDD24033B							372	373	13.5	1.0m @ 13.5 g/t	1
	RVDD24033B							402	406	5.2	4.0m @ 1.3 g/t	1
	RVDD24033B							409.47	410.39	1.6	0.9m @ 1.7 g/t	1
	RVDD24033B							412.08	416.15	4.1	4.1m @ 1.0 g/t	1
	RVDD24033B							418.6	419.71	2.4	1.1m @ 2.2 g/t	1
	RVDD24033B							422.22	424.3	2.4	2.1m @ 1.1 g/t	1
	RVDD24033B							425.91	426.25	0.4	0.3m @ 1.2 g/t	1
	RVDD24033B							427.75	428.15	0.4	0.4m @ 1.1 g/t	1
	RVDD24033B							432.7	433.2	0.8	0.5m @ 1.7 g/t	1
	RVDD24033B							438.85	439.78	1.0	0.9m @ 1.1 g/t	1
	RVDD24033B							500.09	500.6	0.7	0.5m @ 1.3 g/t	1
	RVDD24033B							868	868.43	0.6	0.4m @ 1.5 g/t	1
	RVDD24033B							871.3	874.18	54.5	2.9m @ 18.9 g/t	1
	RVDD24033B							Incl 871.30	873.02	51.7	1.7m @ 30.1 g/t	10
RIVERINA	RVDD24033BW1	6706046	264974	435	272	-60	959	818.9	819.2	0.3	0.3m @ 1.1 g/t	1
	RVDD24033BW1							830	832.9	104.3	2.9m @ 36.0 g/t	1
	RVDD24033BW1							Incl 830.30	831.82	101.2	1.5m @ 66.6 g/t	10
RIVERINA	RVDD24034	6706176	264975	434	276	-59	1146	66	67	1.2	1.0m @ 1.2 g/t	1
	RVDD24034							366	367	2.1	1.0m @ 2.1 g/t	1
	RVDD24034							371	372	1.3	1.0m @ 1.3 g/t	1
	RVDD24034							414	415	3.1	1.0m @ 3.1 g/t	1
	RVDD24034							423	425.2	2.5	2.2m @ 1.1 g/t	1
	RVDD24034							814.28	815.06	4.0	0.8m @ 5.2 g/t	1
	RVDD24034							878	879.03	1.6	1.0m @ 1.6 g/t	1
	RVDD24034							1024.09	1024.66	5.0	0.6m @ 8.7 g/t	1
RIVERINA	RVDD24035	6706336	264988	433	271	-54	552	139	140	1.2	1.0m @ 1.2 g/t	1
	RVDD24035							220	221	2.3	1.0m @ 2.3 g/t	1
	RVDD24035							341	342	1.1	1.0m @ 1.1 g/t	1
	RVDD24035							345	346	1.3	1.0m @ 1.3 g/t	1
	RVDD24035							350	353	9.8	3.0m @ 3.3 g/t	1
	RVDD24035							398	399	1.9	1.0m @ 1.9 g/t	1
	RVDD24035							501	502	1.5	1.0m @ 1.5 g/t	1
RIVERINA	RVDD24036	6706480	264933	433	279	-52	841	331	335	4.4	4.0m @ 1.1 g/t	1
• •	RVDD24036							367.75	368.37	1.3	0.6m @ 2.2 g/t	1
	RVDD24036							376	376.52	0.7	0.5m @ 1.3 g/t	1
	RVDD24036							382.9	385	2.7	2.1m @ 1.3 g/t	1
											-	
	RVDD24036							464	466	12.0	2.0m @ 6.0 g/t	1
	RVDD24036							Incl 465.00	466	10.7	1.0m @ 10.7 g/t	10
	RVDD24036							472	472.76	1.7	0.8m @ 2.2 g/t	1
	RVDD24036							494.65	495.2	1.1	0.6m @ 2.0 g/t	1
	RVDD24036							576	578	3.4	2.0m @ 1.7 g/t	1
	RVDD24036							589	590	1.4	1.0m @ 1.4 g/t	1
	RVDD24036							620.64	621.01	0.9	0.4m @ 2.3 g/t	1
	RVDD24036							645.46	647.85	33.8	2.4m @ 14.1 g/t	1
	RVDD24036							Incl 646.61	647.85	29.2	1.2m @ 23.6 g/t	10
	RVDD24036							749.66	750	0.4	0.3m @ 1.2 g/t	1
	RVDD24036							802.23	805.86	5.3	3.6m @ 1.5 g/t	1

Project	Hole ID	MGA North	MGA East	RL	Azi	Dip	End Depth	Depth From	Depth To	Gram Metres	Au g/t interval	Cut-off
RIVERINA	RVDD24038	6706825		434	277	-56	450	126	127	2.2	1.0m @ 2.2 g/t	1
	RVDD24038							135	136	1.2	1.0m @ 1.2 g/t	1
	RVDD24038							141	143	3.5	2.0m @ 1.8 g/t	1
	RVDD24038							304	305	1.2	1.0m @ 1.2 g/t	1
	RVDD24038							320	321	2.7	1.0m @ 2.7 g/t	1
	RVDD24038							410	411	1.5	1.0m @ 1.5 g/t	1
RIVERINA	RVDD24039A	6706975	264863	436	272	-51	488	33	40	15.2	7.0m @ 2.2 g/t	1
	RVDD24039A							80	82	3.7	2.0m @ 1.8 g/t	1
	RVDD24039A RVDD24039A							200 302	201 303	1.1 3.8	1.0m @ 1.1 g/t 1.0m @ 3.8 g/t	1 1
	RVDD24039A							306	307	1.6	1.0m @ 1.6 g/t	1
	RVDD24039A							352	353	1.1	1.0m @ 1.1 g/t	1
	RVDD24039A							375	376	1.5	1.0m @ 1.5 g/t	1
	RVDD24039A							393	394	1.3	1.0m @ 1.3 g/t	1
	RVDD24039A							406	407	7.1	1.0m @ 7.1 g/t	1
	RVDD24039A							421	422	2.3	1.0m @ 2.3 g/t	1
	RVDD24039A							428	429	1.1	1.0m @ 1.1 g/t	1
	RVDD24039A							476	477	1.6	1.0m @ 1.6 g/t	1
RIVERINA	RVDD24040	6706724	264900	433	265	-50	252	66	67	1.2	1.0m @ 1.2 g/t	1
	RVDD24040							72	76	5.9	4.0m @ 1.5 g/t	1
	RVDD24040							123	126	22.7	3.0m @ 7.6 g/t	1
	RVDD24040							Incl 125.00	126	10.3	1.0m @ 10.3 g/t	10
	RVDD24040							224	225	2.1	1.0m @ 2.1 g/t	1
	RVDD24040							243	246	3.4	3.0m @ 1.1 g/t	1
RIVERINA	RVDD24041	6706176	264966	434	274	-55	535	88	89	3.5	1.0m @ 3.5 g/t	1
	RVDD24041							285.4	286.7	5.5	1.3m @ 4.2 g/t	1
	RVDD24041							Incl 285.40	285.7	4.2	0.3m @ 13.9 g/t	10
	RVDD24041							318.68	319.54	1.5	0.9m @ 1.8 g/t	1
	RVDD24041							322	322.38	0.4	0.4m @ 1.0 g/t	1
	RVDD24041							370	370.6	0.9	0.6m @ 1.4 g/t	1
	RVDD24041							385	386	1.4	1.0m @ 1.4 g/t	1
RIVERINA	RVDD24041W3	6706176	264966	434	278	-53	828	538.57	542	18.7	3.4m @ 5.4 g/t	1
	RVDD24041W3							Incl 538.57	539.35	16.2	0.8m @ 20.8 g/t	10
	RVDD24041W3							555.82	556.15	0.5	0.3m @ 1.4 g/t	1
	RVDD24041W3							562.63	562.95	1.5	0.3m @ 4.6 g/t	1
	RVDD24041W3							572.81	573.35	0.7	0.5m @ 1.3 g/t	1
	RVDD24041W3							605.87	608.17	2.3	2.3m @ 1.0 g/t	1
RIVERINA	RVDD24042	6706336	264983	433	272	-51	298	0	298		N.S.I.	1
	RVDD24042							24	296		N.S.I.	1
RIVERINA	RVDD24043	6705470	264758	438	273	-56	198	35	36	5.1	1.0m @ 5.1 g/t	1
RIVERINA	RVRC20011	6705930	264634	441	272	-60	414				N.S.I.	1
RIVERINA	RVRC20211	6705795	264710	439	270	-55	465				N.S.I.	1
RIVERINA	RVRC23002W1	6705617	264763	438	266	-57	551	228	230.51	2.5	2.5m @ 1.0 g/t	1
	RVRC23002W1							240.76	241.57	1.6	0.8m @ 2.0 g/t	1

LITTLE GEM & ACE PROSPECTS

Hala ID	MGA	MGA	DI.	0 -:	D:	End	Hole	Depth	Depth	Gram	A = /t :t	Cut-
Hole ID	North	East	RL	Azi	Dip	Depth	Туре	From	То	Metres	Au g/t interval	off
ACDD24001	6705983	265535	427	89	-51	293	DDH	31.60	34.00	9.1	2.4m @ 3.8 g/t	0.5
ACDD24001								Incl 32.30	34.00	8.5	1.7m @ 5.0 g/t	1
ACDD24001								49.50	50.50	0.6	1.0m @ 0.6 g/t	0.5
ACDD24001								60.40	60.80	0.2	0.4m @ 0.5 g/t	0.5
ACDD24001								62.00	63.00	0.6	1.0m @ 0.6 g/t	0.5
ACDD24001								69.75	70.20	0.2	0.5m @ 0.5 g/t	0.5
ACDD24001								72.00	73.00	0.7	1.0m @ 0.7 g/t	0.5
ACDD24001								88.10	90.00	1.8	1.9m @ 1.0 g/t	0.5
ACDD24001								Incl 88.10	89.00	1.3	0.9m @ 1.4 g/t	1
ACDD24001								99.80	103.00	2.6	3.2m @ 0.8 g/t	0.5
ACDD24001								Incl 99.80	100.45	0.7	0.7m @ 1.1 g/t	1
ACDD24001								Incl 102.50	103.00	0.6	0.5m @ 1.3 g/t	1
ACDD24001								113.00	114.00	0.6	1.0m @ 0.6 g/t	0.5
LGDD24001	6704433	264798	438	268	-51	360	RCDD	34.00	35.00	0.6	1.0m @ 0.6 g/t	0.5
LGDD24001								116.00	118.00	1.1	2.0m @ 0.5 g/t	0.5
LGDD24001								175.00	182.00	4.9	7.0m @ 0.7 g/t	0.5
LGDD24001								Incl 181.00	182.00	1.6	1.0m @ 1.6 g/t	1
LGDD24001								193.00	198.27	17.2	5.3m @ 3.3 g/t	0.5
LGDD24001								204.00	205.00	0.6	1.0m @ 0.6 g/t	0.5
LGDD24001								211.00	214.00	4.7	3.0m @ 1.6 g/t	0.5
LGDD24001								219.00	220.00	0.6	1.0m @ 0.6 g/t	0.5
LGDD24001								245.00	247.00	1.4	2.0m @ 0.7 g/t	0.5
LGDD24001								250.50	255.05	33.5	4.6m @ 7.4 g/t	0.5
LGDD24001								267.00	267.70	2.3	0.7m @ 3.3 g/t	0.5
LGDD24001								Incl 267.40	267.70	2.0	0.3m @ 6.5 g/t	1
LGDD24001								278.60	283.00	15.1	4.4m @ 3.4 g/t	0.5
LGDD24001								318.90	319.20	0.2	0.3m @ 0.6 g/t	0.5

Section 1 Sampling Techniques and Data - GREATER RIVERINA AREA

Information for historical (Pre Ora Banda from 1996 and 2001) drilling and sampling has been extensively viewed and validated where possible. Information pertaining to historical QAQC procedures and data is incomplete but of a sufficient quality and detail to allow drilling and assay data to be used for resource estimations. Further Ora Banda has undertaken extensive infill and confirmation drilling which confirms historical drill results. Sections 1 and 2 describe the work undertaken by Ora Banda and only refer to historical information where appropriate and/or available.

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample retrospectivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information 	 Croesus Mining N.L; All samples were dried, crushed and split to obtain a sample less than 3.5kg, and finely pulverised prior to a 50gm charge being collected for analysis by fire assay. Monarch Gold Mining Company Ltd; Industry standard work. RC samples collected and sent to certified laboratories for crushing, pulverising and assay by fire assay (RC) and aqua regia (RAB). Pancontinental Mining Ltd; Samples (>2kg) were crushed to 1mm, 1kg split taken and pulverised to 90% minus 20 mesh from which a 50gm aliquot was taken for assay by aqua regia or fire assay. Consolidated Gold N.L/DPPL (Davyhurst Project PTY. LTD.); Industry standard work, RAB samples crushed, pulverised and a 50g charge taken for fire assay. 200gm soil samples oven dried, and pulverised, 50g charge taken for aqua regia assay. Riverina Resources Pty Ltd; Industry standard work. RAB samples taken every metre, composited to 4m using a spear. Samples crushed, pulverised and 50g charge taken for fire assay. RC four metre composite samples were collected using a sample spear. RC and diamond samples crushed, pulverised and 50g charge taken for fire assay and/or 4 acid digest. Any gold anomalous 4m composite samples were re-sampled over 1m intervals using a riffle splitter and also sent to kalgoorlie Assay Laboratory for gold analysis by 50g fire assay. Barra Resources Ltd; Industry standard work. The entirety of each hole was sampled. Each RC and RAB hole was initially sampled by 4m composites using a spear or scoop. To obtain a representative sample, the entire 1m sample was split using a riffle splitter into a calico bag. Whole diamond core samples for ore zones were sampled. Entire samples were pulverised before splitting and a 50g charge taken for fire assay. Greater Pacific Gold; Core sampling method unknown, assumed to be cut half core. RC sampling method unknown. Analysis method unknown. However, work completed by accredited laboratories, Analabs and Ge

		 Riverina Gold Mines NL; Industry standard work, Composited RAB and 1m RC samples assayed by laboratory. Samples crushed, pulverised and a 50g charge taken for aqua regia analysis. Riverina Gold NL; RAB samples were bulked at 2m intervals. RC holes were sampled at 1m intervals. Diamond core samples were taken at geological boundaries, sample method unknown. All samples crushed, pulverised and a charge taken for fire assay (Au) and perchloric acid digest/AAS for other elements. Ora Banda Mining Limited - 1m RC samples using face sampling hammer with samples collected under cone splitter. 4m composite RC samples collected using a PVC spear from the sample piles at the drill site. For drilling up to April 2020, RC samples were dispatched for pulverising and 50g charge Fire Assay. For drillholes RVRC20036 to RVRC20104 inclusive, 1m and 4m composite samples were dispatched to the lab, crushed to a nominal 3mm, split to 500 grams and analysed by Photon Assay method at MinAnalytical in Kalgoorlie. 4m composite samples with gold values greater than 0.2 g/t Au were re-sampled as 1m split samples and submitted to the lab for Photon Assay analysis. Half-core samples, cut by automated core saw. Core sample intervals selected by geologist and defined by geological boundaries. Samples are crushed, pulverized and a 40g charge is analysed by Fire Assay. For all drilling from 2022, -1m RC samples using face sampling hammer with samples collected under cone splitter. 4m composite RC samples were taken outside of mineralised zone, collected using a scoop from the sample piles at the drill site. 1m cone spilt samples were taken within the expected mineralised zones. Core sample intervals selected by geologist and defined by geological boundaries. All samples were dispatched to the SGS laboratory at the Davyhurst site for pulverising. Prepared samples were dispatched to SGS laboratory at the Davyhurst site for pulverising. Prepared samples were then despatched to SGS laboratories i
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 despatched to SGS laboratories in Kalgoorlie for a 50g charge Fire Assay. Croesus Mining N.L; Auger samples were drilled by Prodrill Pty Ltd using Toyota mounted auger rig. RAB holes were drilled by either Kennedy, or Arinooka or Challenge Drilling of Kalgoorlie. Challenge drilling employed a custom built RAB/AC rig. RC holes were drilled by Ausdrill Pty Ltd and diamond holes were drilled by Sandersons. Core was oriented. Monarch Gold Mining Company Ltd; Aircore and RAB holes were drilled by Challenge Drilling. All RC holes were drilled by Kennedy Drilling Contractors with 5^{1/2n} hammer. Pancontinental Mining Ltd; Drilling was undertaken by Davies Drilling of Kalgoorlie using a Schramn T64 rig. Consolidated Gold N.L/DPPL; Auger samples were collected using a power auger fitted to a 4WD vehicle. RAB drilling was undertaken by Bostech Drilling Pty Ltd. Riverina Resources Pty Ltd; RC holes drilled with 5^{1/4n} hammer. Unknown diamond core diameter. Barra Resources Ltd; Holes were drilled by Resource Drilling Pty Ltd using a Schramm 450 drill rig. Greater Pacific Gold; Schramm RC Rig with face sampling hammer, 5^{1/8n} diameter. NQ core, Edson Rig Carpentaria Exploration Company Pty Ltd; RC drilling by Robinson contractors. Face sampling hammer used. Malanti Pty Ltd; Holes were drilled by Redmond Drilling of Kalgoorlie using a truck mounted Schramm rig with a compressor rated at 900 cfm 350 psi. Riverina Gold Mines NL; Vacuum holes were drilled by 6 & B Drilling using a Toyota Landcruiser mounted Edsom vacuum rig fitted with a 2 inch (5.08cm) diameter blade. RAB holes were drilled by PJ and RM Kennedy using a Hydro RAB 50 drill rig mounted on a 4 wheel Hino truck with 600 cfm/200 PSI air capacity. A 51/4 inch hammer and blade were used. RC holes were drilled by either Civil Resources Ltd using an Ingersoll Rand T4W heavy duty

		 percussion rig fitted with a 900 cfm at 350 PSI air compressor and a 51/4 inch (13,34cm diameter) RC hollow hammer or by Swick Drilling using an Ingersoll Rand TH 60 reverse circulation drill rig with 750 cfm/350 PSI air capacity and a 51/4 inch RC hollow hammer or by B. Stockwell of Murray Black's Spec Mining Services using a rig mounted on an 8 x 4 Mercedes. Riverina Gold NL; RC hole were drilled by Green Drilling using Schramm T66 rig. Diamond holes were drilled by Longyear. Diamond holes were sometimes drilled with a RC pre-collar, HQ core and a NQ2 core drilled. Ora Banda Mining Limited - 5.25 to 5.5 inch diameter RC holes using face sampling hammer with samples collected under cone splitter. HQ and HQ3 coring to approx. 40m, then NQ2 to BOH. Metallurgical and geotechnical core holes drilled using HQ3 exclusively. All core oriented by reflex instrument. All core drilled from 2022 was orientated by Axis Champ Ori instrument. Underground diamond drilling - NQ2 coring with standard tubing (triple tubing for geotechnical), all core is oriented by Axis Champ Ori tool, rig alignment via DeviAligner tool, downhole surveys via DeviGyro-Ox tool.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Auger, RAB and RC drill recoveries were not recoded by Croesus Mining N.L, Monarch Gold Mining Company Ltd, Pancontinental Mining Ltd, Consolidated Gold N.L/DPPL, Riverina Resources Pty Ltd, Barra Resources Ltd, Carpentaria Exploration Company Pty Ltd, Malanti Pty Ltd, Riverina Gold Mines NL or Riverina Gold Mines NL. However Monarch, in a Riverina resource report state that "Good recoveries for RMRC series RC drilling were observed. Minor water was encountered in 27 of the RMRC series drill holes" Diamond Core recoveries are very high due to the competent ground. Any core recovery issues are noted on core blocks and logged. Ora Banda Mining Limited - Diamond drill recoveries are recorded as a percentage calculated from measured core against downhole drilled intervals (core blocks). Underground diamond drilling – Diamond drill recoveries are recorded as a percentage calculated from measured core against metre marks and noted core loss blocks from driller's rod counts. Underground face sampling domains marked up, with chip samples taken along the sample line per domain to reduce sampling bias. There is no known relationship between sample recovery and grade.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Croesus Mining N.L; RAB drill logs were recorded both on paper and later electronically by a Casiopia datalogger. Diamond core was geologically, geotechnically and magnetic susceptibility logged. Qualitative: alteration, colour, contact, grainsize, joint, matrix, texture, rocktype, mineral, structure, sulphide, percent sulphide, vein type, percent vein, weathering. Quantitative; percent sulphide, percent vein. Diamond core was photographed. Monarch Gold Mining Company Ltd; Qualitative: lithology, mineralisation code, alteration, vein code, sulphide code. Quantitative; percent mineralisation, alteration intensity, percent vein, percent sulphide. Pancontinental Mining Ltd; All drill data was recorded on computer forms and the lithological descriptions were produced by Control Data' Bordata program. Qualitative: colour, weathering, minerals, grainsize, rock, structure, alteration. Quantitative: alteration intensity. Consolidated Gold N.L/DPPL; Holes were logged at 1m intervals using a standard logging sheet directly onto a palmtop logger. Qualitative: colour, weathering, minerals, grainsize, rock, structure, alteration. Quantitative: alteration intensity. Riverina Resources Pty Ltd; Qualitative: lithology, minerals, oxidation, colour, grain, texture, texture intensity, alteration, sulphide, comments. Quantitative: alteration intensity, percent sulphide, percent quartz veins. Barra Resources Ltd; Each meter from all RC drill holes was washed, sieved and collected in chip trays and stored at the Barminco First Hit Mine office. These rock chips were geologically logged using the Barminco Pty Ltd geological logging codes. This data was manually recorded on logging sheets or captured digitally using a HP Jornada hand held computer utilising the Micromine Field Marshall program and entered into a digital database at

		the Barminco First Hit Mine office. Each diamond drill holes was recovered according to the driller's core blocks and metre marked. The core was logged to the centimetre, and samples were marked up accordingly. The core was geologically logged using the Barminco Pty Ltd geological logging codes. This data was manually recorded on logging sheets in the field and entered into a digital database at the Barminco First Hit Mine office. Qualitative: qualifier, lithology, mineralisation, alteration, grain size, texture, colour, oxidation. Quantitative; percentage of quartz and sulphide. Core was photographed. Greater Pacific Gold; Qualitative logging of lithology, oxidation, alteration and veining. Carpentaria Exploration Company Pty Ltd; Qualitative: description. Quantitative; percent oxidation, percent quartz, percent pyrite. Malanti Pty Ltd; Qualitative: description. Quantitative; percent quartz. Logged on a metre basis. Riverina Gold Mines NL; Qualitative for Vacuum holes: colour, grain size, alteration minerals, rock type, structure, vein type, sulphides, oxidation and comments. Quantitative for Vacuum holes; percent veins, percent sulphides. Qualitative for RAB holes and RC holes from RV110 to RV295: colour, grain size, alteration minerals, rock type, fabric, vein type, sulphides, oxidation and comments. Quantitative RAB holes and RC holes from RV110 to RV295; percent veins, percent sulphides. Qualitative for RC holes from RV296 to RV350: geology, oxidation, colour and description. Quantitative for RC holes from RV296 to RV350; percent quartz. Riverina Gold NL; Qualitative: RQD, lithology, mineralisation, alteration, weathering, veining, fracturing. Quantitative: percent quartz. Riverina Gold NL; Qualitative: Simmates are made of quartz veining, sulphide and alteration percentages. Core photographed both wet and dry. Magnetic susceptibility and RQD were also recorded for core holes. Underground diamond drilling — Qualitative logging: Lithology, texture, alteration, mineralisation/sulphides, structure, vei
Sub-	If core, whether cut or sawn and whether	Croesus Mining N.L; Auger samples were taken from an average depth of 1.5m to 2m. RAB and Aircore samples
sampling techniques and sample preparatio n	 If Core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for 	were collected in buckets below a free standing cyclone and laid out at 1m intervals in rows of tens adjacent to the drill collar. Composite analytical samples (~3.5kg) were initially collected over 5m intervals for each hole and a 1m bottom of hole analytical sample. Analytical composite samples were formed by taking a representative scoop through each 1m drill sample. RC drill samples were collected in large plastic retention bags below a freestanding cyclone at 1m intervals, with analytical samples initially formed by composite sampling over 5m intervals. Where samples were dry, analytical composites were formed by spear sampling, using a 50mm diameter plastic pipe pushed through the drill cuttings in the sample retention bag to the base of the bag. The pipe is removed carefully with the contents of the pipe containing a representation of the retained metre. Wet RC drill samples where thoroughly mixed in the sample retention bag and 'scoop' sampled to form a 5m composite sample. HQ diamond core was cut into halves and sampled on geological boundaries, to a minimum of 20cm samples or on a metre basis on site. The diamond core was cut using a diamond saw, with half core being submitted to the laboratory for analysis and the other stored. Field samples were taken for RAB, RC and diamond core samples at a rate of 1 in 20. Composite analytical samples returning values greater than 0.1 g/t Au were re-sampled at 1m intervals.

- instance results for field duplicate/second-half sampling.
- Whether sample sizes are appropriate to the grain size of the material being sampled.
- Monarch Gold Mining Company Ltd; Drill hole samples were collected at 4m and 3m composite intervals. All samples at ALS Kalgoorlie were sorted, dried, split via a riffle splitter using the standard splitting procedure laboratory Method Code SPL-21, pulverised in a ring mill using a standard low chrome steel ring set to >85% passing 75 micron. If sample was >3 kg it was split prior to pulverising and the remainder retained or discarded. A 250g representative split sample was taken, the remaining residue sample stored and a 50gm sample charge was taken for analysis. All samples at Ultra Trace Pty Ltd were sorted, dried, a 2.5 3kg sample was pulverized using a vibrating disc, was split into a 200-300g subsample and the residue sample stored. A 40grm charge was taken for analysis. Composite samples returning anomalous values were sampled at 1m intervals using a scoop. For both RC and RAB drilling a duplicate sample was collected at every 25th sample, and a standard sample was submitted every 20th sample.
- Pancontinental Mining Ltd; RC samples were collected in plastic bags directly from the cyclone at 1m intervals, split twice through a sample splitter before splitting off a 2kg sample for analysis. Samples were crushed to 1mm, 1kg split taken and pulverised to 90% minus 20 mesh from which a 50gm aliquot was taken. Field samples were taken at a rate of 1 in 10 and results show a good correlation with the original values. Samples sent to SGS were dried, jaw and roll crushed, split and pulverised in a chromium steel mill.
- Consolidated Gold N.L/DPPL; Auger samples were collected at a nominal depth of 1.5m or blade refusal.
 Approximately 200gm of material was placed into pre-numbered paper geochemical bags. Sample numbers were
 entered into a datalogger linked to the GPS unit to ensure accuracy. RAB samples were collected a 1m intervals
 and used to create a 4m composite sample. Samples were oven dried, pulverised in a single stage grinding bowl
 until about 90% of the material passed 75 micron. A 50gm split sample was taken for analysis. Composite samples
 returning values greater than 0.19 Au g/t were sampled at 1m intervals.
- Riverina Resources Pty Ltd; Auger soil samples were collected from a depth of 1.8m or blade refusal. RAB and RC
 4m composites were taken using a sample spear. Samples were dried, crushed, split, pulverised and a 50gm
 charge taken. Composite samples returning anomalous gold values were sampled at 1m intervals using a sample
 spear.
- Barra Resources Ltd; Every metre of the drilling was collected through a cyclone into a large green plastic bag and lined up in rows near the hole in rows of 20. The entirety of each hole was sampled. Each hole was initially sampled by 4m composites using a spear or scoop. Once each hole was logged, intervals considered to be geologically significant were re-sampled at 1m intervals. To obtain a representative sample, the entire 1m sample was split using a riffle splitter into a calico bag. Whole diamond core samples for ore zones were sampled. Samples greater than 2.5kg were riffle split to <2.5kg using a Jones riffle splitter. The entire sample was then pulverised in a Labtechnics LM5 to better than 85% passing 75 microns. A 50gm pulp was taken for assaying in appropriately numbered satchels. Composite samples that returned gold assays greater than 0.1 g/t Au and that had not been previously sampled at 1m intervals, were re-sampled at 1m intervals. In addition, any highly anomalous 1m samples were also sampled again to confirm their assay results.</p>
- Greater Pacific Gold; Sample preparation for RC and core sample unknown.
- Carpentaria Exploration Company Pty Ltd; Samples were collected over 1m intervals. 2m and 4m composite samples were collected using a sample spear. About 2kg samples were despatched for analysis. Samples were dried, crushed, split, pulverised and a charge taken for analysis.
- Malanti Pty Ltd; 1m samples were collected in plastic bags via a cyclone and passed through a triple splitter giving
 a 12.5% split of about 2kg which was placed in a calico bag and marked with the drill hole number and interval
 sampled. The 87.5% was returned to the similarly numbered large plastic bag and laid in rows on site. A trowel was
 used to scoop the samples for composites over 4m and 6m intervals. Samples for assay were then taken with
 composite intervals based on geology. Many of the single splits were selected for assay in the first instance.

		 Samples packed in poly weave bags were freighted for analysis. Samples were dried, crushed, split, pulverised and a 50gm charge taken. RC Samples with anomalous composite assays were split and submitted for analysis. Riverina Gold Mines NL; Vacuum hole samples were collected every metre and split. RAB samples were taken every metre through a cyclone and riffle split to a quarter and composited to 4m intervals. RC samples were taken every metre through a cyclone after being riffle split to a quarter and some composited to 4m. The residue remained on site in plastic bags whilst the quarter split was sent for analysis. For vacuum holes RVV70 to RVV125, a 30grm was taken. RC samples from holes RV110 to RV164 and vacuum hole samples were dried, crushed to nominal 3mm and a 1,000 gram split was taken for pulverising until 90% passed minus 75 microns. A 25grm charge was taken. RC samples from holes RV230 to RV350 were totally pulverised and a 50 grm charge taken. 4m RAB composite samples returning anomalous values greater than 0.1 g/t Au were sampled at 1m intervals. Riverina Gold NL; RAB samples were bulked at 2m intervals. RC holes were sampled at 1m intervals. Diamond core samples were taken at geological boundaries. Samples were crushed, split, pulverised and a charge taken for analysis.
		 Ora Banda Mining Limited – RC samples were submitted either as individual 1m samples taken onsite from cone splitter or as 4m composite samples speared from the onsite drill sample piles. Half core samples, cut by saw. Core sample intervals selected by geologist and defined by geological boundaries. For drilling up to April 2020, RC samples were dried, crushed, split, pulverised and a 50gm charge taken. For drillholes RVRC20036 to RVRC20104 inclusive, 1m and 4m composite samples were dispatched to the lab, crushed to a nominal 3mm, split to 500 grams and analysed by Photon Assay method at MinAnalytical in Kalgoorlie. 4m composite samples with gold values greater than 0.2 g/t Au were re-sampled as 1m split samples and submitted to the lab for Photon Assay analysis. For all drilling from 2022, - RC samples were submitted either as individual samples taken from the onsite cone splitter or as four metres composite samples taken by metal scoop. Core sample intervals selected by geologist and defined by geological boundaries, cut by saw and submitted as half core. All samples were dispatched to the SGS laboratory at the Davyhurst site for pulverising. Prepared samples were then despatched to SGS laboratories in Kalgoorlie for a 50g charge Fire Assay (GO_FAP50V10). Field duplicates, blanks and standards were submitted for QAQC analysis. Underground diamond drilling – Core sample intervals selected by geologist and defined by geological boundaries, selected holes cut by saw and submitted as half core and remainder of holes are whole-core sampled. All samples were dispatched to the SGS laboratory at the Davyhurst site for crushing and pulverising. Prepared samples were then despatched to SGS laboratories in Kalgoorlie for a 50g charge Fire Assay (GO_FAP50V10). Flushes, blanks and standards were submitted for QAQC analysis. Underground face samples as per diamond drilling, including field duplicates, rock chip samples taken via hammer sampling per geology domain. Repeat assays were undertaken on
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. 	 Croesus Mining N.L; Auger samples were sent to Ultratrace Laboratories, Perth, to be assayed for gold using the Aqua Regia method with a detection limit of 1ppb. RAB, aircore, RC and diamond samples were sent to Ultratrace Laboratories in Perth to be analysed for gold using Fire assay/ICP Optical Spectrometry. Diamond core check samples were analysed at Genalysis of Perth. Some diamond core samples were also analysed for platinum and palladium by fire assay. Monarch Gold Mining Company Ltd; RC samples were sent to ALS Kalgoorlie to be analysed gold by fire assay (lab code Au-AA26). This was completed using a 50grm sample charge that was fused with a lead concentrate using the laboratory digestion method FA-Fusion and digested and analysed by Atomic Absorption Spectroscopy against matrix matched standard. RC samples were also sent to Ultra Trace Pty Ltd, Canning Vale Western Australia for gold analysis by lead collection fire assay. Samples were also analysed for palladium and platinum. The Quality control at ALS involved 84 pot fire assay system. The number and position of quality control blanks, laboratory standards

 Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.

- and repeats were determined by the batch size. Three repeat samples were generally at position 10, 30, 50 of a batch and the control blanks (one blank) at the start of a batch of 84 samples. The laboratory standards were inserted randomly and usually two certified internal standards were analysed with a batch, but it was at the discretion of the 'run builder' as to how many standards to add to the batch and where to place them in the run. QAQC at Ultra Trace Pty Ltd was undertaken for every 27th sample. At random, two repeat samples were chosen, one laboratory standard was inserted and one check sample was taken. The check sample was chosen if the first pass of fire assay shows anomalous value.
- Pancontinental Mining Ltd; Samples were sent to Genalysis Laboratory Services Pty Ltd in Perth to be analysed for gold with a detection limit of 0.01 ppm. They were also analysed for gold at SGS laboratory using aqua regia with AAS finish. A number of samples with an assay greater than 0.2 ppm were re-assayed by fire assay. Laboratory standards indicated reasonable accuracy.
- Consolidated Gold N.L/DPPL; Auger samples were submitted to ALS Pty Ltd in Perth to be analysed for gold to a
 detection limit of 0.001ppm using ALS's PM2005 graphite furnace/AAS technique. Samples were also analysed for
 calcium, magnesium and arsenic using ALS's IC205 technique. RAB samples were submitted to Minlab Pty Ltd
 Kalgoorlie to be analysed for gold by fire. Some samples were also sent to Amdel Laboratories Ltd Kalgoorlie for
 gold analysis by fire assay method FAI.
- Riverina Resources Pty Ltd; Auger soil samples were sent to Ultra Trace in Perth to be analysed for gold and arsenic using an aqua regia digest and determination by ICP-MS. RC samples were submitted to Kalgoorlie Assay Laboratory for gold analysis by 50gm fire assay. Samples from holes GNRC012 to GNRC020 were also sent Kalgoorlie Assay Laboratory for gold and nickel analysis using a four-acid digest and gold analysis by 50g fire assay. Martin Zone samples were to Kalgoorlie Assay Laboratories to be assayed Ni, Co, Cr, Cu, Mg, Mn, Fe, S, As, Al, Ca, and Zn using a four acid digest with ICP-OES finish and for Au using a 50gm fire assay digest with flame AAS finish. Some samples were also sent to Ultra Trace in Perth for analysis. 312 end of hole RAB samples from the Forehand Prospect were sent to AusSpec International in Sydney for HyChips spectral analysis developed by AusSpec International and CSIRO capable of analysing dry samples stored in chip trays at a rate of at least 1,600 per day. This was undertaken to identify alteration minerals, weathered clays, Fe oxides, and weathering intensity as well as sample mineralogy including mineral crystallinity and mineral composition. (Results are in appendix 4 of Riverina Project Combined ATR 2006.pdf). Down Hole Electro-Magnetic (DHEM) surveys were conducted in RC drill holes GNRC001, GNRC003 and GNRC004 and three diamond drill holes. These surveys were completed by Outer Rim Exploration Services using a Crone Pulse EM probe. (Southern Geoscience Consultants were contracted to plan the DHEM surveys and interpret the results).
- Barra Resources Ltd; Auger samples were sent to Ultra Trace Analytical Laboratories in Perth to be analysed for gold and arsenic. Gold was determined by Aqua Regia with ICP-Mass Spectrometry to a detection limit of 0.2ppb. All RC pulp samples were sent to Kalgoorlie Assay Laboratories or Australian Laboratory Services Pty Ltd (ALS) in Kalgoorlie for gold analysis. Gold analysis was completed using the 50gm fire assay technique with an AAS finish to a detection limit of 0.01ppm. Each was weighed and data captured, with the charge then intimately mixed with flux. Mixed sample and flux were fused in a ceramic crucible at 1100° C in a reducing furnace. Molten mass was then poured into moulds and allowed to cool. Lead button removed and placed in a cupellation furnace. The resultant dore bead was parted and digested, being made up to volume with distilled water. The analyte solution was aspirated against known calibrating standards using AAS. All diamond core sample pulps were sent to Leonora Laverton Assay Laboratory Pty Ltd to be assayed for gold by fire with an AAS finish to a detection limit of 0.01ppm Au. Some drill hole samples were analysed for gold (Fire assay/ICP Optical Spectrometry) by Ultratrace Laboratories in Perth.

- Greater Pacific Gold; 1m RC samples submitted to Analabs for Au, Ag, Cu, Pb, Zn, As and Ni analysis. Core samples submitted to Genalysis for Au, Ag, Cu, Pb, Zn, As and Ni analysis. Ore zone samples submitted to Minlab for re-assay. Screen fire assay performed on ore zone pulps.
- Carpentaria Exploration Company Pty Ltd; Samples were sent to Australian Assay Laboratories Group in Leonora to
 be analysed for gold with a detection limit of 0.01 g/t Au by fire assay. Repeat assays undertaken for about 1
 sample in 20. Field duplicates and standards routinely submitted with assay batches.
- Malanti Pty Ltd; RC samples from RRC1 to RRC7 holes were sent to Aminya Laboratories Pty Ltd, Ballarat, Victoria, to
 be analysed for gold by fire assay with a detection limit of 0.01 g/t Au. RC samples from holes RRC8 to RRC12
 submitted to Minesite Reference Laboratories, Wangara, Western Australia to be analysed for gold by Fire Assay of
 50g charge (code FA50) with a 0.01ppm lower detection limit. About 1 in 20 assays was either a repeat or duplicate.
- Riverina Gold Mines NL; RC samples from holes RV110 to RV164 and vacuum hole samples were sent to Leonora
 Laverton Assay Laboratory Pty Ltd, Leonora, to be analysed for gold. The charge was dissolved in aqua-regia/solvent
 digest with a double ketone backwash and then assayed using AAS techniques with a detection limit of 0.02ppm.
 RC samples from holes RV230 to RV350, vacuum samples from holes RVV126 to RVV204 and RAB composite samples
 were sent to Multilab Pty Ltd in Kalgoorlie to be analysed for gold. The 50grm samples were digested in aqua regia
 and assayed by AAS techniques with a detection limit of 0.01ppm. Other RC samples were sent to Minlab in Perth to
 be analysed for gold using the aqua regia digest and AAS finish. For vacuum and RAB samples, about 1 in 10 assays
 was a repeat. For RC holes from RV110 to RV164 and vacuum holes, at least 10 percent of a bulk order was repeated
 as a laboratory duplicate for quality control.
- Riverina Gold NL; RAB samples were analysed for gold, silver, arsenic, lead, zinc, copper and nickel. RC samples
 were despatched to Genalysis to be analysed for gold by Aqua Regia/ AAS method. Diamond samples were set to
 Analabs in Kalgoorlie to be analysed for gold by fire with fusion AAA, copper, lead and silver by ASS with perchloric
 acid digestion and, arsenic by ASS with vapour generation and density using an air pycnometer.
- Ora Banda Mining Limited Up to April 2020, all samples were sent to an accredited laboratory (Nagrom Laboratories in Perth. Intertek-Genalysis in Kalgoorlie or SGS in Kalgoorlie). The samples have been analysed by firing a 50gm portion of the sample. This is the classical fire assay process and will give total separation of gold. An ICPOES finish is used. Commercially prepared standard samples and blanks are inserted in the sample stream at a rate of 1:12. Sizing results (percentage of pulverised sample passing a 75μm mesh) are undertaken on approximately 1 in 40 samples. The accuracy (standards) and precision (repeats) of assaying are acceptable. For drillholes RVRC20036 to RVRC20104. 1m and 4m composite RC samples were sent to MinAnalytical Laboratory Services in Kalgoorlie. Sample prep involves drying and a -3mm crush, of which 500 grams is linear split into assay jars for analysis. Samples are analysed by the Photon assay method which utilises gamma radiation to excite the nucleus of the target atoms (gold). The excited nucleus then emits a characteristic photon, which is counted to determine the abundance of gold in the sample. For all drilling after 2022, All samples were sent to the accredited onsite SGS laboratory at Davyhurst for sample preparation. Prepared samples were then despatched to SGS laboratories in Kalgoorlie for a 50g charge Fire Assay (GO_FAP50V10) with MP-AES finish. Commercially prepared standard samples and blanks are inserted in the sample stream at an average rate of 1:25. Sizing results (percentage of pulverised sample passing a $75\mu m$ mesh) are undertaken on approximately 1 in 20 samples. The accuracy (standards) and precision (repeats) of assaying are acceptable. Standards and blanks were inserted into the sample stream at a rate of approximately 1:12. Duplicates were submitted at a rate of approximately 1:30. The accuracy (standards) and precision (repeats) of assaying are acceptable. Underground diamond drilling – All samples were sent to the accredited onsite SGS laboratory at Dayyhurst for sample preparation. Prepared samples were then despatched to SGS laboratories in Kalgoorlie for a 50g charge Fire Assay (GO FAP50V10) with MP-AES finish. Commercially prepared standard samples and blanks are inserted in the sample stream at an average rate

Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	of 1:20. Sizing results (percentage of pulverised sample passing a 75µm mesh) are undertaken on approximately 1 in 20 samples. The accuracy (standards) and precision (repeats) of assaying are acceptable. The accuracy (standards) and precision (repeats) of assaying are acceptable. Face samples assayed as per diamond core, including a field duplicate per face. • Fire assay is considered a total technique, Aqua Regia is considered partial. The Photon assay method is considered a total technique and is non-destructive. • Holes are not deliberately twinned. • Monarch Gold Mining Company Ltd; Geological and sample data was logged digitally and .csv or .xls files imported into Datashed SQL database with in-built validation. Samples bags were put into numbered plastic bags and then cable tied. Samples collected daily from site by laboratory. • Ora Banda Mining Ltd - Geological and sample data logged directly into field computer at the drill rig or core yard using Field Marshall or Geobank Mobile. Data is transferred to Perth via email or through a shared server and imported into Geobank SQL database by the database administrator (DBA). Assay files are received in .csv format and loaded directly into the database by the DBA. Hardcopy and/or digital copies of data are kept for reference if necessary. • Data entry, verification and storage protocols for remaining operators is unknown.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 No adjustments have been made to assay data. Croesus Mining N.L; All drilling was located using a Trimble/Omnistar DGPS with an accuracy of plus or minus 1m. Down hole surveys were either as planned or taken using electronic multi shot camera. The gird system used is AGD 1984 AMG Zone 51. Monarch Gold Mining Company Ltd; The collar co-ordinates of aircore and RAB holes and RC holes RMRC001 to RMRC085 were surveyed using GPS. The co-ordinates of holes RMRC086 to RMRC177 were surveyed using the RTKGPS. All surveying was undertaken by staff of Monarch Gold Mining Company Ltd. Down hole surveys were undertaken every 5m by Ausmine using electronic multi-shot (EMS). The gird system used is GDA94 MGA Zone 51. Pancontinental Mining Ltd; RC drilling at Mulwarrie was surveyed by McGay Surveys. The grid system used is AMG Zone 51. RAB drilling at Riverina South – holes drilled on local Riverina grid and transformed to MGA using 2 point transformation. Holes were not routinely downhole surveyed. Consolidated Gold N.L/DPPL; Auger holes located on AMG grid. Some RAB holes were drilled on an AMG grid installed by Kingston Surveys Pty Ltd of Kalgoorlie. Each 40m grid peg had an accurate (plus or minus 10 cm) northing, easting and elevation position. Other RAB holes drilled on local grid. Holes located using compass and hip chain from surveyed baselines. The grid system used is AMG Zone 51. RAB holes not down hole surveyed. Riverina Resources Pty Ltd; Collar co-ordinates were surveyed using a DGPS. Collar azimuth and inclination were recorded. Drill hole collar data was collected by the First Hit mine surveyor and down hole data was collected by the drilling company and passed onto the supervising geologist. The gird system used is AGD84 Zone 51. Barra Resources Ltd; Collar co-ordinates for northings, eastings and elevation have been recorded. Collar azimuth and inclination were recorded. Drill hole collar data was collected by the First

Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been 	 surveyed. Two grid systems were employed; a local Riverina grid and AGD 1996 AMG Zone 51. Local co-ordinates were transferred to the AMG and MGA grids using a 2-point transformation. Riverina Gold Mines NL; Collar co-ordinates for northings and eastings and have been recorded. Collar inclination was recorded. The grid used was the Riverina grid which is oriented to true north. The origin for this grid is 10,000N, 10,000E located at the south west corner of surveyed M30/98. Riverina Gold NL; For diamond holes, down hole surveys were either assumed or taken using an Eastman camera or gyro. Diamond hole locations surveyed on Riverina local grid. RC and RAB holes located on surveyed Riverina local grid. Topography has been surveyed by recent operators. Collar elevations are consistent with surrounding holes and the natural surface elevation. Ora Banda Mining Ltd (RC, DD) MGA94, zone 51. Drill hole collar positions were picked up by a contract surveyor using RTKGPS subsequent to drilling. Drill-hole, downhole surveys are recorded every 30m using a reflex digital downhole camera. Some RC holes not surveyed if holes short and/or drilling an early stage exploration project. Diamond drillholes completed from 2019 by Ora Banda were surveyed using a Gyro tool. For all drilling from 2022 Drill hole collar positions were picked up by an Ora Banda mining surveyor using RTKGPS subsequent to drilling. All downhole surveys were taken every 10m by Gyro. Underground diamond drilling – diamond drilling collar locations picked up by mine surveyors via theodolite and known surveyed control points. UG diamond drilling is glagnment via surveyed collar locations and DeviAligner tool, downhole surveys via DeviGyro-Ox tool. Underground face sample locations measured via laser distometer to known surveyed control points and development surveys via theodolite. Exploration results are reported for single holes only. Drill hole spacing is adequate for
	applied.	 Barra Resources Ltd; Auger soil sampling program was taken over 50m x 50m, 50m x 100m and 50m x 200m spaced grids, Silver Tongue RAB and RC holes were drilled on 25m x 25m, 25m x 50m and 50m x 50m spaced grids, Corporate James RAB holes were drilled on 50m x 100m and 25m x 100m spaced grids, Forehand RAB and RC holes were drilled on 50m x 100m, 50m x 50m or 25m x 50m spaced grids and Cactus RC holes were drilled on 10m x 10m, 20m x 20m and 40m x50m spaced grids. Ora Banda Mining Ltd – underground diamond drilling – typical spacing for grade control purposes is 20m x 20m. Underground face samples are taken each 3m/4m ore development cut. Resource definition drill intercepts are length weighted, 1.0g/t lower cut-off, not top-cut, maximum 2m internal dilution. Exploration drill intercepts are length weighted, 0.5g/t lower cut-off, not top-cut, maximum 2m internal dilution.
Orientation of data in relation to	Whether the orientation of sampling achieves unbiased sampling of possible	 Drilling was oriented at 90° to the strike of mineralisation and inclined at 60°. Examples are discussed below. Croesus Mining N.L; Holes were either vertical or inclined at 60° and oriented towards the west. Monarch Gold Mining Company Ltd; Holes were inclined at 60° and oriented towards the west.

geological structure	structures and the extent to which this is known, considering the deposit type. • If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 Consolidated Gold N.L/DPPL; Holes were inclined at 60° and oriented towards either the west or east. Riverina Resources Pty Ltd; Holes were inclined at 60° and oriented towards either the west or east. Barra Resources Ltd; Holes were either vertical or inclined at 60° and oriented towards the west. Greater Pacific Gold; Holes drilled to the east inclined at -58 to -60. Suitable for sub vertical N-S striking mineralisation. Carpentaria Exploration Company Pty Ltd; Holes were inclined at 60° and oriented towards either the west or east. Malanti Pty Ltd; Holes were inclined at 60° and oriented towards either the west or east. Riverina Gold Mines NL; Vacuum holes from RVV1 to RVV69 and from RVV126 to RVV204 were drilled vertically. Vacuum holes from RVV70 to RVV125 were inclined at 60° and oriented either east or west. RAB and RC holes were inclined at 60° and oriented either east or west. Riverina Gold NL; RC holes were inclined at 60° and oriented either east or west. Riverina Gold NL; RC holes were inclined at 60° and oriented either east or west. Ora Banda Mining Ltd – RC drilling is predominately inclined at between -50 and -60 degrees towards the west. Drilling inclined to the east is only done when lodes are deemed to be vertical or if local landforms prevent access. Underground diamond drilling – collared from decline cuddies in sub-horizontal and inclined fans cutting across sub-vertical lodes, holes are designed to optimise intersection angles and reduce bias for Main Lode East and West. Some bias is present for the Murchison lodes, given their close proximity to the drill cuddies and this impact is mitigated through detailed wall/backs mapping of Murchison lode intersections in underground workings and future targeted grade control drilling. Little Gem drilling is orientated -50 to west, perpendicular the strike of the mineralisation
Sample security	The measures taken to ensure sample security.	 Unknown for all drilling except for the following; Barra Resources Ltd. Samples received at the laboratory were logged in ALS Chemex's unique sample tracking system. A barcode was attached to the original sample bag. The label was then scanned and the weight of sample recorded together with information such as date, time, equipment used and operator name. Monarch; Sample calicos were put into numbered plastic bags and cable tied. Any samples that going to SGS were collected daily by the lab. Samples sent to ALS were placed into sample crates and sent via courier on a weekly basis. Ora Banda Mining Ltd- Samples were bagged, tied and stored in a secure yard on site. Once submitted to the laboratories they are stored in cages within a secure fenced compound. Samples are tracked through the laboratory via their LIMS.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Ora Banda Mining Ltd has reviewed historic digital data and compared it to hardcopy and digital (Wamex) records, noting that no issues were found.

Section 2 Reporting of Exploration Results - Riverina

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral	· · · · · · · · · · · · · · · · · · ·	All tenure pertaining to this report is listed below.
tenement and		TENEMENT HOLDER AGREEMENTS
land tenure status	agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. • The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	Farm-in and JV with Davyston Exploration Pty Ltd for all minerals other than gold and its byproducts (portion of tenement only) Davyston Exploration Pty Ltd holds a consent caveat and a mortgage South32 Ltd holds royalty rights (portion of tenement only) Province Resources Ltd holds royalty rights (portion of tenement only) Carnegie Gold PTY LTD is a wholly owned subsidiary of Ora Band Mining Ltd. There are no known heritage or native title issues. There are no known impediments to obtaining a licence to operate in the area.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Drilling, sampling and assay procedures and methods as stated in the database and confirmed from Wamex reports and hard copy records are considered acceptable and to industry standards of the time.
Geology	Deposit type, geological setting and style of mineralisation.	 The geology of the Riverina area consists of an interlayered sequence of meta-basalts, meta-sediments and ultramafics, rarely cross-cut by narrow pegmatite dykes. The local stratigraphy strikes roughly N-S with primarily steep east to sub-vertical dips. The area has been affected by upper greenschist to lower amphibolite grade metamorphism with many minerals exhibiting strong preferred orientations. All rock units exhibit strain via zones of foliation, with strongly sheared zones more common in ultramafic lithologies. Contemporaneous strike faults and late stage thrust faults have dislocated the stratigraphy and hence, mineralisation. Gold mineralisation at Riverina is hosted by quartz-sulphide and quartz-Fe oxide veining primarily in the metabasalts. Metasediments and ultramafics may also contain gold mineralised quartz veining, although much less abundant. Gold mineralisation is also seen in silica-biotite-sulphide and silica-sericite-sulphide alteration zones in the metabasalts. The geology of Little Gem is entirely consistent of metasediments. Gold mineralisation is associated with calcsilicate alteration. A Carbonate unit is consisted a high grade host
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	See list of drill intercepts.

Data aggregation methods	 elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length lif the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high Original assays are length weighted. Grades are not top cut. Riverina resource is reported at a Lower cut off of nominally 1.0g/t. Due to the narrow nature of mineralisation a minimum sample length of 0.2m was accepted when calculating intercepts. Maximum 2m internal dilution. Exploration drilling Little Gem is reported at a lower cut off is nominally 0.5g/t.
	 grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation at Riverina and Little Gem is approx. N-S and sub vertical. Surface drilling is oriented perpendicular the strike of the mineralisation. UG drilling from drill cuddy with hole radiating in fans. Holes testing strike extremities are at lower angles to the ore lode and therefore not true widths, while those perpendicular to the lode can approximate true widths. If it is not known and only the down hole lengths are reported, there

	should be a clear statement to this effect (eg 'down hole length, true width not known').	
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	See plans, cross-sections and long sections.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The location of drill hole intersections is shown on the plans and 2D/3D diagrams and are coloured according to grade to provide context for the highlighted intercepts
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Riverina has no known reported metallurgical issues. Results from previous processing have demonstrated that good gold recovery can be expected from conventional CIL processing methods. Recent baseline metallurgical test work demonstrated the following gold recoveries: Oxide – 90% Transitional – 97% Fresh – 94.3% Additional variation test-work remains ongoing.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further GC drilling at Riverina underground will continue as the access into the mine is deepened. Further resource definition drilling will be conducted from the surface, when beyond the reach of the underground drills, aimed and continued mineral resource growth and resource conversion. Ongoing Exploration